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Summary

This thesis focuses on probabilistic associative learning. One of the classic effects

in this field is the stimulus associability effect (Mackintosh, 1975) for which I derive a

statistically optimal inference model and a corresponding approximation that addresses

a number of problems with the original account of Mackintosh.

My proposed account of associability - a variable learning rate depending on a

relative informativeness of stimuli - also accounts of the classic blocking effect (Kamin,

1969) without the need for Prediction Error [PE] computation. Given that blocking

was the main impetus for placing PE at the centre of learning theories, I critically

re-evaluate other evidence for PE in learning, particularly the recent neuroimaging

evidence. I conclude that the brain data are not as clear cut as often presumed.

The main shortcoming of the evidence implicating PE in learning is that probabilis-

tic associative learning is mostly described as a transition from one state of belief to

another, yet those beliefs are typically observed only after multiple learning episodes

and in a very coarse manner. To address this problem, I develop an experimental

paradigm and accompanying statistical methods that allow one to infer the beliefs at

any given point in time.

However, even with the rich data provided by this new paradigm, the blocking

effect still cannot provide conclusive evidence for the role of PE in learning. I solve this

problem by deriving a novel conceptualisation of learning as a flow in probability space.

This allows me to derive two novel effects that can unambiguously distinguish learning

that is driven by PE from learning not driven by PE. I call these effects generalized

blocking and false blocking, given their inspiration by the original paradigm of Kamin

(1969). These two effects can be generalized to the entirety of probability space, rather
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than just the two specific points provided by the paradigms used by Mackintosh and

Kamin, and therefore offer greater sensitivity to differences in learning mechanisms. In

particular, I demonstrate that these effects are necessary consequences of PE-driven

learning, but not learning based on the relative informativeness of stimuli.

Lastly I develop an online experiment to acquire data on the new paradigm from

a large number (approximately 2000) of participants recruited via social media. The

results of model fitting, together with statistical tests of generalized blocking and false

blocking, provide strong evidence against a PE-driven account of learning, instead

favouring the relative informativeness account derived at the start of the thesis.
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I must express my deepest gratitude to my parents, for their continued support and

encouragement without which none of this would be possible.

Finally, I would like to thank to Medical Research Council for funding my PhD.

9



10



Contents

1 Introduction 15

1.1 Computational level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Algorithmic level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Implementational level . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Stimulus associability effects 29

2.1 Formalisation of associative memory . . . . . . . . . . . . . . . . . . . 32

2.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.2 Formalised experimental procedure . . . . . . . . . . . . . . . . 33

2.2 Rational model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Algorithmic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.1 Hebbian learning . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.2 Rescorla-Wagner . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.3 Factors scaling the learning . . . . . . . . . . . . . . . . . . . . 41

2.3.4 Normalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Neuroimaging evidence for PE 47

3.1 The nature of PE-correlated signal in fMRI . . . . . . . . . . . . . . . . 48

3.1.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

11



4 Statistical inference of subjective probability distributions 55

4.0.1 Task design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.0.2 Generative model . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.1 Estimation of decision-making parameters . . . . . . . . . . . . 61

4.1.2 Calculating likelihood of subjective distributions . . . . . . . . . 63

4.1.3 Experimental paradigm . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Is probabilistic associative learning driven by PE? 71

5.1 Blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Theory of learning in subjective probability space . . . . . . . . . . . . 74

5.2.1 Learning as a flow . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Compound learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.1 Generalised blocking . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.2 False blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5.1 Post-hoc analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Discussion 95

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

References 105

Appendix 111

A Derivation of likelihood of γ . . . . . . . . . . . . . . . . . . . . . . . . 111

B Decision-making parameters optimisation . . . . . . . . . . . . . . . . . 114

C High and low performing participants . . . . . . . . . . . . . . . . . . . 115

12



Chapter 1

Introduction

This thesis concerns associative learning in probabilistic contexts. Associative learning

is a particularly exciting area of research because it potentially subsumes a number

of other areas of learning. The definition of associative learning relies on the concept

of associating cues with outcomes, but this can be extended to some of the contexts

traditionally considered non-associative, such as habituation (Rumelhart, McClelland,

Group, et al., 1988), by generalising the associative context into a non-associative one.

This thesis defines associative learning very generally: as discovering contingencies in

the world (or task) that can be exploited to predict future events.

For example, simple habituation to a stimulus can be framed in an associative con-

text as associations between a single cue and multiple outcomes, while dishabituation

occurs when an unexpected outcome appears. In Chapter 3, I consider a parameter

estimation paradigm, which can also be viewed as associating a single cue with multiple

outcomes, except that the participant is required to explicitly estimate the value of the

parameter.

Episodic memory can be seen as a large number of strong associations; however,

the learning mechanisms that operate within episodic memory are certainly different

to the ones that operate in associative memory, which is generally unable to encode

a complex episode from a single exposure (Rumelhart & McClelland, 1982). An im-

portant distinction between associative and episodic memory for this thesis is that

associative memory is considered ahistoric, i.e. the learning episode is forgotten after
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the associative model is updated by an observation. Episodic and associative memory

often interact. It is certainly the case that associative instances might be encoded as

episodic memories during an associative task and then used to make decision in asso-

ciative contexts, but at that point the use of these episodes is seen as an associative

memory mechanism for the purpose of this thesis.

Before formalizing probabilistic associative learning, it is useful to formalize deter-

ministic associative learning. Associative learning is measured in tasks where cues are

associated with outcomes. When those associations are deterministic, we can consider

the task in terms of set theory, as finding an appropriate cue-outcome map C → O.

From the learner’s perspective, this task can be solved simply by sampling all cues once

and recording which outcomes are contingent on a particular cue. This can be expressed

as a NC × NO binary matrix, where NC and NO are number of cues and outcomes.

This set-theoretical conceptualisation is useful not only to contrast with probabilistic

associative learning, but will also be used to motivate methods in Chapter 4, where it

greatly simplifies analysis of learning problems.

Probabilistic associative learning can no longer be characterised by C → O maps.

Instead, a cue c is associated with all outcomes o with probability P (o|c). This task

is more complicated than deterministic associative learning because the learner has to

estimate NC discrete probability distributions with NO states. Now the NC×NO ma-

trix contains real values that are suitably bounded by axioms of probability. Moreover,

the convergence of the estimates with the real contingencies is only guaranteed for an

infinite number of samples from C.

Often, posterior probabilities over outcomes are not represented explicitly by learn-

ing theories, but instead a weight matrix is updated after each learning trial. Apart

from being monotonic, the relationship between weights and probabilities has many

forms in the literature. Importantly, weights are not bound by the axioms of proba-

bility. The theories that specify weights generally concern themselves with a quantity

∆wijτ = wij(τ+1) − wijτ which defines how an element [i, j] of the weight matrix W

changes with exposure to new data at time τ .

David Marr’s seminal levels of analysis (Marr & Vision, 1982) provide us with a

14



useful framework for how to approach associative probabilistic learning from multiple

perspectives. Marr’s highest, computational level, describes the goals of the system,

and conforms to rational or normative theories of learning. These theories provide

descriptions of the tasks to be solved, and operate on the assumption that evolutionary

pressure has pushed the neural system to operate in a mode that is close to optimal

computation (Anderson, 1990). In other words, rational theories describe what the

system ought to do. Most of the learning mechanisms derived from rational theories

assume that learning is driven by prediction error [PE]. PE represents the difference

between the outcome on the current trial and the outcome(s) predicted from previous

trials. PE-learning generally provides performance that is closer to optimal than non-

PE learning. However, PE is not a necessary consequence of approximately optimal

inference, as I will argue in this thesis.

Theories pitched at Marr’s algorithmic level of analysis attempt to describe the rules

by which a system operates, i.e., the specific algorithm (of many potential ones) that

achieves the system’s computational goals. Learning theories at this level of analysis

are informed largely by behavioural evidence, such as the use of blocking experiments

to infer the utilization of PE in learning, as expanded below. Lastly, theories pitched

at the implementational level describe how a system such as the brain realizes learning

algorithms, subject to the constraints of the biological substrate. However, as dis-

cussed in Chapter 3, the neural evidence for PE in learning is far from established, and

consistent with other non-PE rules too.

1.1 Computational level

Rational theories of learning are a relatively new approach to the theory of associative

learning, first introduced in Anderson’s seminal monograph The adaptive character of

thought (1990). These theories look at the problem of interest and find the statistically

optimal solution to that problem. The rational theory is then simply the optimal

statistical inference procedure. The rationale behind this approach is the evolutionary

pressure on organisms to maximise fitness and that the optimal statistical inference
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achieves this.

The rational approach has seen tremendous success during the last two decades,

demonstrating how learning behaviours are close to the optimal statistical inference

across many different experimental paradigms and different species (e.g. Courville,

Daw, & Touretzky, 2006). In one sense, this is hardly surprising because it is essential

for all organisms to appropriately react to the environment and predict its changes

(Bray, 2009), and optimal statistical inference is basically a characterisation of good

predictions. However, the fact that organisms deal well with their environment does

not mean that they implement optimal inference. Instead, natural selection means that

it is likely that some problems are solved by rather arbitrary computations that arise by

accidental means, or by adapting solutions to other problems that the organism faces.

Moreover, when there are computational limits of a system, these can result in less

than optimal inference. Finally, when learning is measured in laboratory behavioural

tasks, the computational goals are not always clear, and different participants may

make different assumptions about the learning task. These considerations mean that

the rational approach to learning is not always appropriate.

One example of a failure of rational models of cognition are order effects, especially

primacy and recency effects (Daw, Courville, & Dayan, 2008). These effects in asso-

ciative learning are analogous to those in list learning: cue-outcome pairs presented at

the beginning and end of an experiment have disproportionately greater influence on

participants’ learning, even though the order of trials is completely irrelevant.

While there are several algorithmic models that predict primacy and recency effects

(e.g. Kruschke, 2006), it is not possible for a rational model to produce these effects.

Daw and colleagues (2008) attempt to solve this problem by using semi-rational models.

To do this, they bound the rationality of the rational model in two important ways, each

of which reveals a fundamental way in which humans diverge from optimal statistical

inference.

To illustrate this, consider the generative model for an associative task, in which

each cue is associated with a probability distribution across outcomes that is fixed

across trials. This results in equal importance of all data points, and thus no serial
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position effects are possible. The recency effect emerges when the possibility of change

in the underlying associations is introduced into the generative model (Daw et al.,

2008). Undoubtedly, the possibility of change in the underlying associations is one

of the essential properties of our natural environment, and this naturally leads to

greater importance being placed on more recent data. However, it is definitely not

a rational solution to the task in question. Moreover, the number of variations on

the basic generative model that are plausible in the natural environment is virtually

unbounded. Therefore I find the choice of including this assumption into the model

a profound breach of the rational approach making the model no more theoretically

motivated than any of the algorithmic models the authors criticise for lack of theoretical

grounding (e.g. Kruschke, 2006). Moreover, this approach opposes another popular

view of learning, spelled out by David Shanks as “to a first approximation, associative

judgements are unbiased at asymptote” (Shanks, 1995, p. 33) , because it suggests

that the learning is fundamentally biased.

Similarly to the recency effect, the primacy effect also only emerges in rational

models when the rationality is bounded. It is entirely possible to derive a generative

model that would produce a primacy effect, e.g. by assuming that the amount of noise

in the system increases over trials. This time Daw and colleagues (2008) attempted

to explain the inefficiency (primacy effect) by the need for approximation because the

rational model is computationally infeasible. Exactly as in the case of their explanation

of recency effect, the argument of Daw and colleagues is hard to disagree with; however,

because the number of ways that can be used to approximate rational inference is

unbounded and not all of them produce the recency effect, this semi-rational approach

has little value in practice.

I think the reason that the additional assumptions of the semi-rational approach

seem so natural is that exact statistical inference requires re-evaluation of all the data

ever encountered, in order to update ones’ beliefs. This becomes inefficient with large

data sets, since storing each data point in memory poses significant cost to the neural

system. At some point, the benefit of performing the exact inference is outweighed by

its computational cost. To make the learning practical, an iterative algorithm is needed
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that only considers a limited number of statistics of the data previously observed (along

with the new observation), to form a new posterior. The problem here is that there is

an infinite number of ways for the statistical inference to be approximated.

While the need for approximation is apparent and relatively straightforward to de-

rive once the limits of the system are known, it is extremely hard to find out what the

limits are. There is a multitude of possible bounds on computation, such as memory

capacity, processing power or energy requirements, none of which are yet known. In-

ferring the bounds on processing from the sub-optimality of learning performance is

tricky, because the sub-optimality might be caused by applying the wrong generative

model.

The most common approximations to optimal statistical inference take a form simi-

lar to the Rescorla-Wagner rule (e.g. Nassar, Wilson, Heasly, & Gold, 2010; Daw et al.,

2008), which entails the computation of PE. As the Rescorla-Wagner rule is identical to

gradient descent with a squared error cost function (Rescorla, Wagner, et al., 1972), it

is therefore guaranteed to be the best iterative approximation based purely on weight

matrix. If, for instance, not only on a weight matrix (current state of associations) was

conserved, but also a selection of previous data points, it would be possible to arrive at

even better approximations (e.g. by combining gradient descent with particle filtering:

Doucet, De Freitas, & Gordon, 2001). The optimal approximation given the particular

computational bounds of the system may or may not involve PE computation depend-

ing on what precisely the computational bounds are. Indeed, we know that some of the

most recent datapoints can be conserved in memory as episodes, and used for belief

update (Mazur & Wagner, 1982).

1.2 Algorithmic level

Analysis at the algorithmic level does not make explicit assumptions about the envi-

ronment, nor computational limitations of the system; these theories merely specify the

computation performed. There are three ways these models are derived: a) top-down,

very much in the way algorithms are developed in computer science, b) by specifying
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bounds on rationality in a rational model, or c) derived post-hoc to fit the data.

While there has been a large number of various algorithmic theories of learning, the

vast majority of them can be conceptualized in the connectionist framework (Rumelhart

et al., 1988). The main tenet of connectionism is that associations can be represented

as weights in an associative network and learning is a change to these weights. The

few theories that do not lend themselves to the connectionist framework, such as ex-

emplar learning (Shepard, 1958), are not well supported by the data (Shanks, 1995)

and therefore will not be considered in this thesis.

In the early 20th century, Edward Thordike (1927) postulated that the behaviours

providing favourable outcomes will become more likely. This became known as the law

of effect. When interpreted in the connectionist framework, this postulate becomes

identical to Donald Hebb’s neural doctrine, which is an implementational theory de-

rived from Hebb’s observations of synaptic plasticity. In terms of weight matrices, we

can define Hebb’s learning rule as:

∆wij = kaitj (1.1)

where ai refers to activation of input unit / presence of cue i, tj is a presence of the

(target) outcome j, and k is a real-valued learning rate. We will look closer at properties

of the many theories based on the principles derived by Thorndike and Hebb (Hebbian

learning) in Chapter 2.

The dominance of Hebbian theories of learning was challenged in 1969 with the

introduction of blocking paradigm by Leon Kamin (Kamin, 1969). Blocking is a com-

pound conditioning paradigm in which a novel cue A is presented in a compound with

cue B, together with a reward (outcome). In the experimental condition, cue B has

already been conditioned to predict the reward, while in the control condition, cue B

is novel too. Subsequently, reward anticipation caused by cue A is compared between

the two groups, and the blocking effect refers to the finding that this anticipation

is greater in the control condition than experimental condition, because cue B has

“blocked” learning of cue A 1.

1Though note that this difference is not always found (Maes et al., 2016).
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Hebbian theories cannot explain this effect because in Hebbian learning, the update

on weights relating to one cue are entirely independent of the weights relating to the

other cues. Blocking has been used as an argument in favour of learning rules that

instead modulate the amount of learning by PE. PE offers a simple explanation to the

blocking effect: In the experimental condition, when the compound cue is presented,

there is relatively little PE because the reward is already predicted by cue B. This

results in little learning and hence little subsequent anticipation for reward when cue

A is presented. On the other hand, the control condition results with relatively high

PE when the compound is presented, since the reward is not predicted by either cue,

resulting in a greater amount of learning (to both cues) and thus more subsequent

reward anticipation by cue A.

Having said this, in Chapter 2 I show that augmenting Hebbian learning with a

scaling parameter (learning rate) that depends on the informativeness of cues can also

produce a blocking effect.

Despite the equivocal nature of the evidence from blocking experiments, there is

little doubt that the Rescorla-Wagner (Rescorla et al., 1972) rule has become the most

influentional algorithm for associative learning (or conditioning) (Siegel & Allan, 1996).

For our purposes, this rule can be specified as

∆wij = kai(tj −
∑
i′

wi′jai′) , (1.2)

where the bracketed term represents the PE, i.e, difference between target outcome

and outcome predicted by current weights.

Despite being the optimal solution involving a single weight matrix from the ratio-

nal perspective, the standard Rescorla-Wagner rule cannot explain a number of other

findings from associative learning, which has led to a number of adjustments. One of

these adjustments is stimulus associability, which refers to the consistency to which

a cue has been associated with reward in the past. This adjustment was originally

proposed by Nicholas Mackintosh (1975) to account for associative history effects. For

our purposes this can be formalised by the addition of a variable αi that represents the
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associability of cue i:

∆wij = αikai(tj −
∑
i′

wi′jai′) (1.3)

where α is increased on a given trial if:

|tj − aiwij| < |tj −
∑

i′∈I,i 6=i′
wi′jai′| (1.4)

(i.e, when cue i predicts the outcome better than all other cues), and decreased if:

|tj − aiwij| > |tj −
∑

i′∈I,i 6=i′
wi′jai′| (1.5)

However, these equations increase the computational complexity of the algorithm,

because NC values for α need to be updated on every trial and stored in memory.

Subsequently, John Pearce and Geoffrey Hall attempted to explain associative his-

tory effects by an algorithm that is an interesting fusion of Rescorla-Wagner and Heb-

bian learning (Pearce & Hall, 1980). Their approach was essentially a Hebbian learning

model, but with a variable learning rate that is defined as the absolute value of PE on

the previous trial:

∆wijτ = kaiτajτ

∣∣∣∣∣tj(τ−1) −
∑
i′

wi′j(τ−1)ai′(τ−1)

∣∣∣∣∣ . (1.6)

This modification explains both associative history effect and blocking effects. Nonethe-

less, yet other findings could not be explained, leading to a combined model (Pearce &

Mackintosh, 2010). However, consideration of these effects is beyond the scope of the

present thesis.

1.3 Implementational level

Theories couched at the implementational level are constrained by considerations of the

physical instantiation of algorithms, which for present purposes are the neural mecha-

nisms in the human brain. There has been a substantial amount of research describing

the mechanisms of synaptic plasticity, and how such synaptic processes underlie be-

havioural evidence of associative learning, at least in simple organisms (Kandel, 2001).
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The link from synaptic processes to behavioural learning in humans is less direct, mainly

owing to limits on the invasive methods of measuring plasticity. However, we proceed

under the minimal assumption that the cellular mechanisms in primitive animals are

preserved in humans, and also underlie probabilistic associative learning.

The Hebbian doctrine of synaptic plasticity states that neurons that “fire together,

wire together”, as expressed formally in Equation 1.1.

There are a few problems with this definition, even before we consider behaviour

of neural systems. First, wij is not bounded; second, there is no mechanism for wij to

decrease. These two issues have been addressed by Oja (1982) by the simple addition

of a decay term:

∆wij = kaiaj − dwij (1.7)

As more biological detail was discovered over the years, new theories of synaptic

plasticity were derived. In respect to the topic of this thesis - the role of PE in learning -

virtually all of the biologically inspired theories are Hebbian, i.e. do not ascribe any role

to PE at the level of single synapses. One of the most influential contemporary models

is named BCM after its authors Bienstock, Cooper and Munro (1982). Interpreted in

the connectionist framework, BCM is essentially Oja’s rule with a special postsynaptic

activation function that depends not only on the current presynaptic activation, but

also time-averaged presynaptic activity:

∆wij = φ(ai, āi)aj − dwij , (1.8)

where

φ(a, ā) = a(a− ā). (1.9)

While virtually all biologically-inspired models of synaptic plasticity are Hebbian in

their nature, it has been demonstrated that a proportion of neurons in ventral midbrain

compute PE (e.g. Schultz, Dayan, & Montague, 1997). While natural selection implies

eventual loss of features that do not increase fitness, it is possible that PE computation

improves fitness in some way other than guiding associative learning. In other words,

those neurons may not necessarily contribute to learning. It is challenging to link

the activity of these neurons to learning in a way analogous to the work that linked
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synaptic plasticity to behavioural change (as done by Kandel, 2001) because these

neurons have not been found in lower species, and finding analogous evidence in higher

species is more difficult due to increased dimensionality of cortical representations and

practical considerations for measuring learning. To counter this problem, a number

of researchers resorted to the use of non-invasive neuroimaging techniques in humans

(e.g. Gläscher, Daw, Dayan, & O’Doherty, 2010; Nassar et al., 2010). This approach

however suffers from a number of problems, such as pooling over large populations of

neurons, and alternative metabolic contributions, as discussed in depth in Chapter 3.

In conclusion, evidence at the neural implementational level does not sufficiently

support the notion that PE is the driving force behind learning; nonetheless, learning

is currently the only good explanation for the existence of neurons that signal PE.

1.4 Summary

The vast majority of the development in the field of associative learning is focused

around PE-based theories. The main drivers behind the popularity of these theo-

ries are the empirical blocking effect (Kamin, 1969) and rational analyses of learning

(Anderson, 1990). However, the classic blocking experiments of Kamin (1969) are not

always reproducible (Maes et al., 2016), and in Chapter 2, I introduce an alternative

explanation for the blocking effect that does not rely on PE. Moreover, while rational

models of learning are often seen as an example of inductive reasoning (Gelman & Shal-

izi, 2013), thereby offering a less biased view of learning, without specifying bounds of

rationality, these rational theories are not testable. This renders the rational approach

hypothetico-deductive rather than inductive, exactly as the theories at the algorithmic

level. On the other hand, building a learning model at the implementational level, i.e.

based on the descriptions of synaptic plasticity (e.g. Hebb, 1952; Bienenstock et al.,

1982; Toyoizumi, Kaneko, Stryker, & Miller, 2014), could be considered an inductive

approach, because it takes the biological properties of neurons and assumes only that

their consequences are reflected at higher levels of description. However, this approach

results in learning theories that are essentially modifications of Tolman’s law of effect
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(1932), without necessitating a role of PE in learning.

In conclusion, there is a top-down argument for the role of PE in learning, which

relies on the assumption that the computational limitations of the neural system are in

a regime that favours approximations to statistical inference based on gradient descent

(PE). The behavioural evidence supporting the role of PE in learning has been recently

found to be less robust than originally thought (Maes et al., 2016). On the other

hand, there is a good bottom-up argument for Hebbian learning, as its origins are in

the description of synaptic plasticity. This thesis aims to find whether the principles

implicated by the implementational or the computational level are reflected at the

algorithmic level.

1.5 Overview of the thesis

In Chapter 2, I look at the ability of of various algorithmic learning theories to account

for associative history effects as defined by (Mackintosh, 1975). As to my knowledge

there is no rational theory that could account for this effect, Chapter 2 includes its

derivation. The rational theory was further used to derive an algorithmic approxi-

mation that explains the associative history effect of Mackintosh, while being better

theoretically motivated and less computationally complex. This algorithm is essentially

Hebbian learning scaled by the relative informativeness of a cue.

In Chapter 3, I reconsider the neuroimaging evidence used to implicate the role of

PE in associative learning. While the fact that PE is computed in the brain is well

established (e.g. Schultz et al., 1997) the link between the neural PE signal and

learning has not been well established. By means of analytical proof I demonstrate

that parameter estimation tasks can not be used to distinguish between PE and non-

PE learning. This proof is extended by numerical methods to the general associative

learning context.

In Chapter 4 I identify the lack of direct observability of the subjective probability

distributions as the main barrier to distinguishing PE and non-PE learning theories.

This chapter includes an experimental paradigm and accompanying statistical methods
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that allow for inference of subjective probability distributions in participants.

These methods are utilised in Chapter 5 on a large online dataset collected to

investigate whether associative learning is driven by PE. The results of this experiment

strongly suggest that PE does not have the role it has been ascribed by the Rescorla-

Wagner theory. In contrast, the algorithm based on relative informativeness derived in

Chapter 2 provided significantly better fits to the data.
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Chapter 2

Stimulus associability effects

There are many possible algorithms that can achieve reasonably good learning (e.g.

Widrow, Hoff, et al., 1960; Hebb, 1952). However, these algorithms tend to have many

degrees of freedom, and it is therefore possible to find an algorithm simulating almost

any data. The best way to dissociate between them is to look for situations when they

fail to account for the data. There is a group of behavioural effects that can be used for

this purpose. One of them is associative history, which is an effect of previous learning

on current learning (LePelley & McLaren, 2004). One specific associative history effect

is stimulus associability, as originally described by Mackintosh (1975).

Here I offer a detailed analysis of the mechanisms that can give rise to an effect

observed in one paradigm from our lab (Greve, Cooper, Anderson, & Henson, 2014).

That paper described a number of behavioural experiments purported to show that

one-shot human associative learning is driven by prediction error. Experiment 2 was

the only paradigm that explicitly manipulated associability of cues, through varying

the consistency of the C → O mapping.

The first phase of that experiment - the training phase – varied the consistency of

associations between cues and outcomes. An example of cues with different consistency

of associations after training can be seen in Figure 2.1. Learning during this training

phase was not measured directly, though was inferred indirectly from the speed-up

in reaction times that was found for consistent but not inconsistent cues. During

the second phase of the experiment - the study phase - each cue was paired with a
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Figure 2.1: Two different example observations of cue-outcome pairing. Note that

both examples entail the same number of observations, but they have different consis-

tency of associations.

completely new (unseen) outcome. Lastly, in the final test phase, a three-alternative-

forced-choice [3AFC] tested memory for which outcome had been paired with a cue

in the study phase. The two other 3AFC choices were also from the study phase,

but had been paired with different cues. The crucial finding of this experiment was

that accuracy on 3AFC was higher for consistently paired cues than for inconsistently

paired cues. The authors explained this result in terms of supposedly greater PE

when consistent versus inconsistent cues were paired with new outcomes in the study

phase, causing better learning of those new associations. Here I investigate these

claims and explore an explanation of the observed effect that consistent cues have

higher associability.

I analyse both rational and algorithmic models of the effect of cue consistency,

but ultimately I aim to demonstrate how those two approaches can complement each

other, in a way where the rational model explains the main principles to be used in an

algorithmic model. The algorithmic model might then in turn explain the instances

where human performance departs from rationality. A good algorithmic model can

be therefore seen as an approximation to the ideal solution described by a rational

model. This is echoed in the more mathematical literature, where it is well known
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that neural networks are often an approximation of statistically optimal inference (for

formal proofs see White, 1989; Ruck, Rogers, Kabrisky, Oxley, & Suter, 1990). Still,

this complementary approach is less common in cognitive science, as evident in the

passionate debate about the superiority of rational versus algorithmic approaches (e.g.

Jones & Love, 2011).

Association 
Consistency

Prediction 
Error

Magnitude   
of learning       

Response 
Prediction

Prediction Error

Scaling

Normalisation

Latent Variables

3AFC             
accuracy

Figure 2.2: The three different causal models of the behavioural effect observed by

Greve and colleagues (2017). Note that the rational model is based on the same causal

theory as normalisation.

The rational model I propose here identifies an association consistency as important

for predicting the posterior probability distribution across outcomes given a cue. The

main idea is that when a cue has low consistency, the posterior probability across

outcomes is even more uniform than their respective frequency in the data. In Section

2.2, I show how consistency can be determined from the data and rationally used to

compute the posterior probability across outcomes.

Next, I go on to prove that neither a simple Hebbian algorithm nor a basic Rescorla-

Wagner algorithm can implement this rational approach, produce this pattern of results

and therefore cannot explain the results of Greve at al. (2014). I then consider Mack-

intosh’s (1975) modification of learning in Section 2.3.3, in which weight updates are

scaled by a measure of cue consistency, formalized as associability (α) for each cue, and

extend this idea with a simpler and more tractable scaling factor that is determined

by the informativeness of the weights associated with each cue. Finally I consider a

second algorithm that can equally explain cue consistency effects, via normalisation of

response selection. (These different algorithms are illustrated in Figure 2.2).
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The original account of Greve at al. (2014) assumes that the predictions are af-

fected directly by associative history, and errors in these predictions (PE) drive the

weight updates. The associability theory assumes that associative history affects the

magnitude of learning, without necessarily computing PE. Lastly, the normalisation

account assumes that cue consistency affects the selection of responses from outcome

predictions, without necessarily scaling learning per se, which has an identical causal

structure to the rational model. It is difficult to distinguish between these algorithms

since the amount of PE, the magnitude of learning and the outcome predictions are

all latent variables. We can however investigate their internal consistency and inherent

limitations.

All of the algorithms are formalised into computational models that can be used

for rigorous mathematical analysis. All the analytical arguments presented are sup-

ported by numerical simulations, which were qualitatively compared to the results of

the behavioural experiment (see Figure 2.5; Greve et al., 2014).

2.1 Formalisation of associative memory

2.1.1 Notation

For the purpose of rigorous analysis, it is necessary to fully define the system of in-

terest. In the experiment described here (Greve et al., 2014), the associations learned

were between scenes and faces; however for generality we will refer to these sets as

cues (scenes) and outcomes (faces). Because there was no systematic relationship (e.g.

similarity) within the sets of cues and outcomes, we will treat them as discrete variables

(or orthogonal representations for the purpose of a neural network). The participants

were exposed to trials of cue-outcome pairings, and performed an incidental task on

the outcome (decide whether the face was male or female). They were not told to

intentionally learn the pairings, but being able to predict the outcome (which occurred

shortly after the cue) would help their task of responding as quickly as possible. How-

ever it is impractical to keep in memory all of the instances, so in our algorithmic
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Figure 2.3: Graphical model of associative memory. Knowledge about cue-outcome

associations is stored as a weight matrix w.

models, we assume that knowledge is integrated into a structure summarising associa-

tions between cues. This is necessary because at some point, the cost of storing extra

items in memory will exceed the benefit of better prediction (e.g. Simon, 1972).

We therefore conceptualise associative memory in terms of a graphical model (see

Figure 2.3). Each ci node corresponds to one level of cue C, each outcome oj to one

level of O. For the purpose of modelling, states of variables will be encoded as vectors1

O and C specifying states of the individual nodes. The weight matrix w specifies the

association between C and O nodes. Since cues are mutually exclusive and there is

no uncertainty in cue identification, the probability of outcomes is fully defined by the

weight vector corresponding to the currently observed cue.

2.1.2 Formalised experimental procedure

Using the notation we introduced, Greve’s experiment (2014) is illustrated in figure 2.4,

and formalised as follows: During the training phase, the cues are divided into three

1A single underline is used to denote a vector, while a double one denotes a matrix.
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Figure 2.4: Schematic of design of Experiment 2 in Greve et al. (2017) that manip-

ulated associative consistency.

subsets with different consistency of C → O associations. Items from a consistent

subset were shown three times to participants, each time paired with the appropriate

cue. A baseline subset was shown only once, therefore there was no information about

the consistency of its associations. An inconsistent subset was shown three times, but

a different outcome was shown with each presentation of the same cue. Presentations

of cues from different subsets were intermixed. As described earlier, the effect of cue

consistency was measured by re-presenting each cue with a completely new outcome

(in the study phase) and then later testing memory for this association using 3AFC.

Greve et al.’s results are shown in Figure 2.5, where memory for the new associations

was best for consistent cues and worst for inconsistent cues.

2.2 Rational model

We assume that during learning, a rational agent should minimize surprise derived

from observing each cue-outcome pairing. Surprise can be defined as the negative

log probability of the observed outcome (Shannon & Weaver, 1949). A rational agent

should calculate the expected probability distribution for Oτ+1, given the cue Cτ+1 just
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Figure 2.5: Pattern of results on 3AFC after manipulation of association consistency.

seen and all past cue-outcome pairings {C1:τ}, {O1:τ}, where τ indexes trial number

(pairing). Therefore the surprise in our situation can be defined as:

−log2P (Oτ+1|Cτ+1, {C1:τ}, {O1:τ}) (2.1)

If we have no useful priors P (C) and P (O), the posterior probability is equivalent to

a normalised likelihood. Nonetheless, consistency of associations is useful information

for future learning. When consistency is high, the agent should consider the stimulus

informative. For the case shown in Figure 2.1, for example, when a participant observes

a number of inconsistent (relatively stochastic) pairings, then the surprise from seeing

a yet unseen stimulus (e.g. o3) should be lower than after observing a pairings with

high consistency (relatively deterministic).

However, to be able to compute the posterior probability across outcomes given an

observed cue, we need to obtain an estimate of consistency first. In fact, for each cue

we will estimate a parameter, γ, called concentration, which is inversely proportional

to cue consistency. If we have no prior knowledge about γ, we can estimate its most

likely value γ̂ by simple maximisation of its likelihood2.

L({Oτ}, γ|{Cτ}) = P ({Oτ}|{Cτ}, γ) =
1

β(γ)

NO∏
j=1

β(γ + n(j)) (2.2)

2Full derivation of this formula can be found in appendix A.
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where n(j) refers to how many times outcome oj was observed, NO is the number of

outcomes and β is the beta function.

The estimated value γ̂ may be then used to define a prior distribution for asso-

ciations corresponding to a cue. This is identical to assuming that for each cue, the

association with outcomes is defined by a discrete probability distribution drawn from

a Dirichlet distribution. The Dirichlet distribution is usually parametrised by a vector

A = {γo1 , γo2 , ..., γoN}. However, since we assume no general bias in associations, we

can use a simplified symmetrical Dirichlet distribution, specified by one hyperparame-

ter γ, in which case A = {γ, γ, ..., γ}. Using the definition of the Dirichlet probability

density function (provided in appendix A, Equation 9), it is apparent that the posterior

across outcomes can be defined by the number of times the current cue was paired with

each outcome (n(Cτ+1)) and by the hyperparameter γ.

P (Oτ+1|Cτ+1, {Ct=1:τ}, {O1:τ}, A) = Dirichlet(A+ nCτ+1) (2.3)

Using this formula with a particular set of observations will always result in the

same γ̂, because γ is a property of the dataset. But for the sake of illustration, we

can consider how the posterior probability across outcomes changes with γ̂ (despite

that they are not separable). The effect of this procedure is best illustrated on yet

unseen outcomes (Oτ+1 /∈ K+ , where K+ means already seen outcomes and K means

all outcomes), for which we can define the posterior by:

P (Oτ+1 /∈ K+|Cτ+1 = j, γ̂) =
(K −K+) P (Oτ+1 = g|n(g) = 0, γ̂)

(K) P (Oτ+1 6= g|n(j), γ̂)
. (2.4)

The numerator in this equation refers to the probability of an unseen outcome g multi-

plied by the total number of unseen outcomes (K −K+), while the denominator refers

to the probability of any outcome that has already been observed with a particular

cue. Note that n(g) refers to the number of observations of outcome g while n(j) refers

to cue j. Substituting Equation 2.3 and integrating out the nuisance variables, we get:

P (Oτ+1 /∈ K+|Cτ+1 = j, γ̂) =
(K −K+)γ̂

Kγ̂ + n(j)
. (2.5)
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while for the seen outcomes it is:

P (Oτ+1 ∈ K+|Cτ+1 = j, γ̂) =
n(j) + γ̂

Kγ̂ + n̄(j)
, (2.6)

where

n̄(j) =

NO∑
i=1

n
(j)
i . (2.7)

To see the effect of cue consistency, we can examine the limits (see Table 2.1) of

these functions, since these functions are clearly monotonic with respect to γ̂. These

limits indicate how a rational agent would exhibit the same pattern of behaviour as

was observed in the experiment of Greve and colleagues: For highly consistent cues (in

the limit), the probability of outcomes will approach their relative frequency, while for

inconsistent cues, all outcomes will approach equiprobability. In the test phase of the

experiment of Greve and colleagues, the outcome from the study phase (seen once) is

tested against two outcomes as yet unseen with this cue. Since the relative frequency

of unseen outcomes is 0, it is easy to see why the correct recall in the consistent case

is relatively higher than in the inconsistent case, where the probabilities for seen and

unseen outcomes are closer to equal. This behaviour was confirmed when this rational

model was computationally simulated.

γ unseen seen

inconsistent γ̂ →∞ K−K+

K
1
K+

consistent γ̂ → 0 0
n
(j)
i

n̄(j)

Table 2.1: Posterior likelihood of seen or unseen outcome in the limits of γ for a cue

j and outcome i.

2.2.1 Discussion

The rational model provided here defines the statistically optimal solution to Experi-

ment 2 of Greve and colleagues (2014), which showed that learning of new associations

was better for cues that had a more consistent pairing in the past. This model pro-

duces the same pattern of results as was observed in the experiment, which suggests
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that people indeed infer the consistency of stimuli when completing this task. How-

ever, this does not mean that the behavioural effect is the result of statistically optimal

procedure as described here. There are other processes which might produce the same

pattern of results, despite not being the optimal mechanism. These algorithmic models

are the topic of the rest of this chapter.

This rational model assumes that the distributions across outcomes are independent

among cues. While this assumption is likely false as confusion of cues can happen this

effect bears no relevance to present analysis as cue confusion was not systematically

manipulated in the experiment (Greve et al., 2017).

The rational model requires storage of all instances of learning in memory, but this

framework can be easily adapted to step-by-step Bayesian updates to pose a realistic

constraint on memory. Still, the example provided here has severe limitations in physi-

ological interpretation. Maximisation of the function given by Equation 19 in appendix

A requires keeping an extra statistic about each cue, and is not a simple process, but

requires advanced computational capabilities, since searching for the maximum like-

lihood value is demanding. This kind of computation in its exact form is generally

impossible in neural systems. However, there might be good approximations to this

process which are possible in a neural system.

2.3 Algorithmic models

I shall briefly define the basic properties of Artificial Neural Networks (ANNs) used in

the following analysis. The architecture of an ANN follows the graphical model devised

earlier (Figure 2.3), but requires some additional mechanisms. The weight matrix is

initialized before learning to a roughly flat distribution, by drawing each weight from

a Gaussian distribution (µ = 1
N
, σ = 1

N2 ) defined by number of possible outcomes

N = NO. It is necessary to distinguish between 1) the value of unit activation aj (the

posterior probability of observing outcome oj), and 2) its target value tj defined by the

observed C → O pairing in the environment.

The activation across outcome units does not necessarily follow the properties of
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a probability distribution. There are a number of ways in which such a distribution

can be interpreted; however, to avoid increasing the number of free parameters, a fixed

transform can be used to convert the activation distribution into a proper probability

distribution. Because all variables in the model are discrete and the states are mutually

exclusive, the softmax scheme can be used (Denker & Lecun, 1991; Rumelhart et al.,

1988). The 3AFC task results are then modelled as a softmax transformation of the

activations across the three O units presented in each test trial.

To make the analysis simpler, I assume that learning occurs only after the exposure

to a cue-outcome pairing, as a single update ∆wi,j to the association between ci and

oj . Thus for the collection of all associations, the weight matrix W is:

W
τ+1

= W
τ

+ ∆W
τ

(2.8)

All of the learning rules presented below use a constant k controlling the learning

rate. Unless otherwise stated, I assume k is a positive number smaller or equal to 1.

2.3.1 Hebbian learning

The Hebb rule (Hebb, 1952) captures probably the simplest idea about how learning

might happen in biological systems. Here I show that various extensions of the Hebb

rule - Oja’s rule (Oja, 1982) and the BCM rule (Bienenstock et al., 1982) - cannot

account for the experimental evidence discussed earlier in this chapter. See Section 1.2

and 1.3 for definition of these learning rules and discussion of their properties.

Let ci and ch be two cues with different associative histories and ok, ol and om

be outcomes never seen by the participant before (as in Figure 2.4). The proof that

variants of the Hebb rule cannot explain the results of Greve et al. has two parts. First,

we need to show that all weights corresponding to the outcomes ok, ol and om (w(k), w(l)

and w(m)) will be identical as long as these outcomes are not seen. Secondly, we need to

show that when ci is paired with ok and ch with om, the associative change is identical

in both cases no matter what the associative history of ci and ch (∆wik = ∆whm). This

concludes the proof since it shows that ok and om are identically associated to their

corresponding cues at the point of the 3AFC (and likewise for ol).
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1) For Hebb’s and Oja’s learning rules (given by Equations 1.1 and 1.7), it is

sufficient to show that a weight will not be changed unless a corresponding outcome is

presented:

oτ 6= ox =⇒ ax = 0 =⇒ ∆w(x)
τ = 0 (2.9)

In the case of the BCM (Equation 1.8), the kaiaj term will be unchanged for the

same reason, however the dwij will cause a change. Nonetheless, while the individual

weights corresponding to unseen cues will be changed, this will be the same for all

unseen outcomes (at least on average, given randomly initiated weights).

2) If we compare the conditions during the study phase, we find that activation of

both cue and outcome for each condition is identical, resulting in identical change of

weights.

This means that none of the terms found in Hebb’s, BCM and Oja’s rules (Equations

1.1, 1.8 and 1.7) differ across the conditions. Therefore, the learning of the outcomes

ok, ol and om will be identical. Thus in general, it is impossible for Hebbian learning

to account for the cue consistency effect.

2.3.2 Rescorla-Wagner

The Widrow-Hoff learning rule (Widrow et al., 1960), is probably the most popular

ANN implementation of the Rescorla-Wagner rule (Rescorla et al., 1972). It implements

a gradient descent algorithm with squared error function:

Ej =
1

2
(tj − aj)2 (2.10)

and corresponding error derivative of

dEj

dwij
= tj −

NO∑
i=1

aiwij (2.11)

Because the error function does not refer to weights relating to outcomes other than

that presented (oj in relation to above equations), it is apparent that this approach

cannot account for Greve et al.’s findings for the same reason as the proof given for

the Hebb rule in Section 2.3.1. In other words, the weights after training for unseen
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outcomes will be identical on average. Augmenting the Widrow-Hoff rule with a decay

term (like Oja/BCM extensions of Hebb rule) will not help, for the same reasons as for

Hebb rule in previous section.

2.3.3 Factors scaling the learning

In previous sections, I have shown that neither variants of the Hebb rule, nor the

Widrow-Hoff rule implementation of PE-driven learning, can explain the cue consis-

tency effects found by Greve et al. This is because these rules operate at the local level

of individual weights, so weights for unseen outcomes are identical, regardless of the

prior associative history of previously seen outcomes. However, it is possible to intro-

duce an extra term into the learning equations that will scale the learning in a global

manner, which if suitably defined can make the consistency of seen outcomes affect the

learning of subsequent unseen outcomes. First, I investigate the original explanation

of Greve et al. Secondly, I discuss an approach taken by Mackintosh (1975), identify

its problems and then derive a theoretically better motivated and computationally less

expensive alternative based on entropy of the weight vector relating to a particular cue.

Global PE

Greve and colleagues (Greve et al., 2014) hypothesised that the results they obtained

were due to learning being scaled by global prediction error. However, it is not clear

whether their results are actually consistent with this hypothesis. Their inconsistent

condition [inc] can be defined by constantly changing C → O, while their consistent

condition [con] has C → O changed only on the last trial. Since two trials is the

lowest number necessary to establish different consistency levels between conditions,

we can consider just the difference between conditions at τ = 3. In other words, the

observed outcomes for each condition can be defined as ordered sets Ocon = {1, 1, 3}

and Oinc = {1, 2, 3}.

Considering the two conditions separately in a simplified scenario where only one

cue exists, Hebbian learning (Equation 1.1) can be scaled by the total absolute error

39



E as

∆wj = kEaj , (2.12)

where

E =
∑
j′∈O

|tj′ − wj′| . (2.13)

After the first trial, the weight vectors will be identical across conditions as the

conditions are identical until τ = 2. During the second trial the error E and hence

weight change will be larger for the inconsistent condition, where the pairing changed.

More learning after τ = 2 will in turn again result in greater E for the Inconsistent

condition when the pairing changes (for both conditions) at τ = 3, predicting the

opposite pattern to that found in the data. Thus, at least for the above definition of

global PE, Greve and colleagues’ behavioural pattern remains unexplained (future work

could examine whether this conclusion holds for the summation of higher moments of

the difference between target and outcome, i.e, more convex error functions).

Associability

Mackintosh (1975) extended the Rescorla-Wagner (1972) learning theory by adding a

variable learning parameter α that is defined by Equations 1.3 to 1.5. This is obviously

not a useful approach for the behavioural data discussed here, since the experimental

design (Greve et al., 2014) involved only one cue at a time, therefore the ∆αj would take

exclusively negative values. Most importantly, the approach proposed by Mackintosh

(1975) requires the organism to keep track of an extra statistic - associability - for each

cue and update it on every trial.

Nonetheless, the Mackintosh’s main idea provides a good starting point for deriva-

tion of a new learning rule based on the consistency of associations. As identified in

Section 2.2, the best way to quantify consistency of a cue is to find the maximum like-

lihood hyperparameter of a Dirichlet distribution generating the observed data. The

likelihood formula we have provided is impractical because it requires a record of out-

come counts (n(i)) and it does not have a closed-form solution (Minka, 2000). The

lack of closed-form solution makes this task computationally demanding and unlikely
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to happen in the brain; however there are alternative metrics with similar properties.

Cue informativeness

The consistency of a cue for the purpose of scaling the learning can either be evaluated

as an additional dynamical variable (as Mackintosh suggested) or, to avoid increasing

the complexity of the model, determined from the information already encoded in our

ANN. The only structure in the ANN that contains information about the consistency

of cue ci is the vector of corresponding weights w(i). In information theory, a measure

of information called entropy. Entropy is a measure of disorder in a system in terms

of the distribution of its states (Sethna, 2006) therefore it is a useful inverse metric

to quantify informativeness of a cue (how specific is the prediction made upon the

cue, see Equation 2.14). Moreover, for a given probability distribution, entropy is a

monotonic transformation of the most likely Dirichlet hyperparameter, linking well

into the rational model. Because of the properties of our model (see Section 2.3), the

normalized w(i) vector can be used as a probability distribution with elements pj.

I =
−1∑

j pjlog(pj)
(2.14)

Both Hebb and Widrow-Hoff rules can be scaled by the informativeness of the

weight vector, e.g for Hebb rule:

∆wij = kIaitj (2.15)

Cues with higher consistency will have higher informativeness, and therefore larger

weight updates, consistent with the results of Greve et al.

Note also that some of the most influential sources of evidence for the models of

associative learning are based on compound learning, where more than one cue is paired

with an outcome (Kamin, 1969; Mackintosh, 1975). To account for this evidence, we

can define a relative form of informativeness, where α is:

α =
I(wω)∑
c∈C I(wc)

(2.16)

where ω refers to a cue presented on a given trial.
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In conclusion, classic learning rules scaled by a measure of consistency derived from

a weight vector, such as informativeness, are able to account for the findings of Experi-

ment 2 of Greve and colleagues (2014). Moreover, this approach is better theoretically

grounded and less computationally expensive than the approach of Mackintosh (1975).

2.3.4 Normalisation

The last algorithmic model is closely tied to the rational model. A closer look at the

rational model reveals that it is the distribution of expectations that is directly affected

by cue consistency. However, rather than augmenting the learning rule with informa-

tion about this distribution, this information can be used directly in the transformation

of output unit activations into response probabilities. In other words, this information

can be used to adjust the softmax function (cf. Section 2.3). The softmax function can

be parameterised by a temperature parameter3 T :

P (Oτ+1 = oj) =
exp(aj/T )∑R
k=1 exp(ak/T )

(2.17)

For high values (T → ∞) the posterior will be almost flat, while for low values

(T → 0), the outcome with highest activation will approach a posterior probability of

1.

By making the temperature value inversely related to cue consistency, i.e. propor-

tional to the entropy as defined in the previous sections, it can be seen that the Greve

et al. Experiment 2 results can again be reproduced.

2.4 Discussion

This chapter analysed the theoretical implications of an experiment conducted by Greve

and colleagues (2014). The experiment manipulated the consistency of cues in an

associative learning task, and examined the effect on subsequent learning of the same

cues paired with new, unseen outcomes. They argued that their observation of better

3i.e. this was set to 1 until now.
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learning of new outcomes for cues with high past consistency is consistent with the

hypothesis that PE drives learning (even in one-shot, explicit memory tasks).

I derived a rational model to explain this result, and then considered various algo-

rithms that can be used to approximate the rational model within an artificial neural

network framework. More specifically, I showed how local learning rules, including

those driven by PE, are not consistent with the rational model. One solution is to

scale learning by a global measure of cue informativeness such as entropy, derived from

the weights associated with each cue. This represents a more efficient and plausible

implementation of Mackintosh’s idea of cue associability (1975). Another solution is to

normalise the mapping from output activations to response probabilities, making them

sensitive to the same measure of informativeness.

Quantitative fitting of models to the data was not performed because this would

involve another level of modelling (mapping the subjective probability of an outcome

to the probability of outcome selection, as discussed in Chapter 4), which would result

in the model being over-parametrized, i.e, insufficient data in the accuracy levels re-

ported by Greve and colleagues (2014) in order to distinguish different learning rules.

In other words, it is not possible to quantitatively distinguish between the scaling and

normalisation algorithms based on behavioural data because the magnitude of learning

is a latent variable. However, it may be possible to distinguish them by simultaneous

recording of brain activity: according to the scaling account, the effect of cue consis-

tency arises during learning, i.e. during the study phase of Greve et al.’s experiment.

According to the normalisation account on the other hand, the effect of cue consistency

should happen during response selection, i.e, during the test phase of Greve et al.’s ex-

periment. However, it is also possible that normalisation occurs at some point in the

period between learning and test, for example as some form of weight normalisation

(e.g, pruning).

This chapter has argued, at both Marr’s computational and algorithmic levels, that

the recent data used by Greve et al. to support PE in human associative learning is

not conclusive. Indeed, I proved that neither local learning rules like the Widrow-Hoff

rule, nor learning driven by global prediction error, can reproduce these data. In the
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next chapter, I consider the neural evidence for PE in human learning, i.e, at Marr’s

implementational level.
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Chapter 3

Neuroimaging evidence for PE

Chapter 2 analysed stimulus associative history effects at the computational and algo-

rithmic level, and showed that they do not provide support for learning being driven

by Prediction Error [PE]. In the present chapter, I will question neural evidence im-

plicating the role of PE in learning at the implementational level. I model associative

learning in artificial neural networks using Hebbian (non-PE) learning algorithms to

investigate whether the data used to implicate PE in learning can arise without actual

PE computation. I conclude that the metabolic demands of synaptic change during

Hebbian learning would produce a PE-correlated component in functional magnetic res-

onance imaging (fMRI), which suggests that the research used to imply PE in learning

is currently inconclusive.

There is a considerable body of evidence that PE is computed by dopaminergic

neurons in ventral midbrain. Single-cell recordings have shown neurons that are excited

by unexpected reward, and depressed by unexpected lack of reward (Schultz et al.,

1997). This response implies reward PE computation takes place in the brain; however,

it does not imply that the PE signal is utilized during learning, and no single-cell study,

to our knowledge, has demonstrated this link to learning. Furthermore, these findings

have only been obtained with regard to rewarded behaviour, while the majority of

learning in humans happens in absence of reward (Tolman, 1932).

These concerns can be potentially addressed in fMRI studies by relating a PE-

related component of fMRI to subsequent memory, with or without overt rewards.
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Unfortunately, most fMRI research has focused simply on replicating the single-cell

findings by identifying a correlate of PE in the human brain (e.g. McClure, Berns,

& Montague, 2003; D’Ardenne, McClure, Nystrom, & Cohen, 2008; Abler, Walter,

Erk, Kammerer, & Spitzer, 2006), without assessing its effect on behaviour. I am

only aware of two fMRI studies that attempted to go beyond the single-cell recording

findings by demonstrating an effect of PE-related component in fMRI on learning

(McGuire, Nassar, Gold, & Kable, 2014; Gläscher et al., 2010). Both of these studies

identify a component of the fMRI signal that is correlated with trial-by-trial estimates

of PE from an assumed learning model, and then link that component to subsequent

decision-making.

3.1 The nature of PE-correlated signal in fMRI

However, a PE-correlated fMRI signal does not necessarily originate from PE compu-

tation: the BOLD signal measured by fMRI may relate to metabolic changes that are

only indirectly related to neural activity. One of the major factors contributing to the

BOLD signal is cellular respiration associated mainly with ATP metabolism (Aubert

& Costalat, 2002), which is elicited by a large number of cellular processes. Synaptic

plasticity has several components working at different timescales (Collingridge, Isaac,

& Wang, 2004), but there are four notable processes that operate at the timescale of

these studies: a) synaptic transmission of signal, b) facilitation, which is an impor-

tant form of short-term synaptic plasticity (Kandel, 2001), c) migration of receptors,

which is a crucial components of long-term potentiation and depression (Collingridge

et al., 2004), and d) fast forms of homeostatic activity, which serve as a form of global

synaptic scaling and metaplasticity (Pérez-Otaño & Ehlers, 2005). While synaptic

transmission (a) is the main energy expense during signalling (up to 55% of signalling

cost, Harris, Jolivet, & Attwell, 2012), synaptic plasticity (b-d) can increase signalling

efficiency up to hundred-fold (Harris et al., 2012) and therefore be expected to have a

significant energy budget. Many of these synaptic processes occur rapidly (Collingridge

et al., 2004), and could therefore take place within the same timewindow (resolvable by
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fMRI) as any neural activity related to PE. Thus while the actual energy consumption

of synaptic plasticity is unknown (Harris et al., 2012), I conclude that there is a distinct

possibility that it is sufficiently large to contribute to the BOLD response.

The outstanding question for this alternative explanation is why synaptic plasticity

would correlate with PE, unless PE were computed and used to update synapses. In

what follows, I model synaptic plasticity as the magnitude of Hebbian weight update

in associative networks, and demonstrate that this quantity correlates with PE even

when the learning algorithm does not compute PE.

3.1.1 Analysis

I consider a modified Hebbian learning rule that includes a weight decay term, also

called Oja’s rule (Equation 3.1, Oja, 1982). This learning rule does not use the

current state of the network (e.g, predictions) to inform learning in any way. The only

modification from the classic Hebbian algorithm is that the weights decrease linearly

at each time step, which is the minimal modification necessary to obtain stable and

biologically plausible learning dynamics. I contrast this variant of Hebbian learning

with the Widrow-Hoff learning algorithm, also modified to include decay to increase

its biological plausibility (e.g. Rumelhart et al., 1988) as shown in Equation 3.2. The

formulation of theWidrow-Hoff learning rule used here is essentially Hebbian learning

scaled by PE. In these equations, wij refers to the weight between unit i (representing

the cue) and unit j (representing the outcome), ai/aj refer to the activity of unit i/j,

tj refers to a desired output of unit j, 0 ≤ k < 1 is the learning rate, 0 < d ≤ 1 is the

decay rate and the H and WH superscripts refer to Hebbian or Widrow-Hoff learning

rules respectively.

∆wHij = −dHwij + kHaiaj (3.1)

∆wWH
ij = −dWHwij + kWHai(tj −

∑
i′

(wi′jai′)) (3.2)

First, I address the relationship between learning under Hebbian and Widrow-Hoff
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rules in an experiment conducted by McGuire and colleagues (2014). The parameter

estimation task they used is effectively associative learning with a single cue, because

the participants’ task was simply to predict the value of a parameter during each

trial. As only one stimulus exists in this paradigm, the i subscript becomes redundant,

therefore we can say that aj = wj and both H and WH learning rules can be simplified

to

∆wH
′

j = −dH′
wj + kH

′
aj (3.3)

and

∆wWH′

j = −dWH′
wj + kWH′

(tj − wj). (3.4)

By equating ∆wH
′

j = ∆wWH′
j , we can see that this statement is true whenever kH

′
=

kWH′
and dWH′

+ kWH′
= dH

′
. This means that in parameter estimation tasks, learn-

ing according to the Widrow-Hoff rule can be perfectly mimicked by a Hebbian rule.

Therefore, performance on this task cannot be used to argue for PE learning.

This proof cannot be extended to experiments with multiple cues, such as the one

by Gläscher and colleagues (2010). I therefore turn to computational simulations to in-

vestigate whether there is a correlation between Hebbian weight update and prediction

error.

3.1.2 Simulations

In computational simulations of multi-cue learning I ask whether PE correlates with

weight update. Because fMRI observes entire populations of neurons, in contrast to

single-cell recordings, we need to specify the variables of interest at the population level

too.

I only consider the magnitude of the population weight change, |∆WH |, because

the fast decreases in synaptic strength are likely to require a similar amount of ATP

as increases (Kandel, 2001; Collingridge et al., 2004) thus producing the same BOLD

signal. Therefore the change associated with trial τ is:

|∆WH
τ | =

∑
i

∑
j

|wijτ − wij(τ−1)| . (3.5)

48



Likewise, I only consider the magnitude of the population PE, given that both

positive and negative PE is likely to have metabolic consequences. I define this quantity,

|PE|, as the sum of the absolute values of differences between predictions for each

possible outcome, ‖aj‖, and the corresponding target values tj, on the current trial:

|PE| =
∑
j

∣∣∣∣tj − ‖aj‖∣∣∣∣ , (3.6)

where the prediction ‖aj‖:

‖aj‖ =

∑
i aiwij∑

j

∑
i′ ai′wi′j

(3.7)

is a normalized activation vector as most parametrisations of Hebbian learning do

not produce predictions that can be interpreted directly as probabilities.

Another quantity of interest is the classification error after learning E . This is

defined as the magnitude of the difference between prediction and true (noiseless)

outcome for each cue C, thus not only capturing how well the learning model can

remember observations, but also how resilient it is to noise during learning:

E =
∑
C

(∑
j

tCj − ‖aCj ‖

)
. (3.8)

Simulations were conducted for a number of possible experimental designs, for both

categorical and continuous associative learning, with various degrees of stochasticity

and various numbers of cues/outcomes. The simulations were run across the range

of values for learning rate and weight decay that produce plausible learning dynamics

(figure 3.1). I recorded |∆WH | and |PE| on each trial, and calculated the correlation

between them.

The resulting correlations, plotted as a function of learning rate and weight decay,

reveal that most of the parameter space results in strong correlations (figure 3.1).

Moreover, the classification error E is almost identical across the parameter space

(except for a region in the bottom left where both parameters are near zero), and

therefore almost all parameter combinations are equally plausible for a real learner

that tunes its learning parameters to the task. In other words, it is not the case that

situations in which |PE| and |∆WH | are highly correlated are non-optimal.
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Correlation(|PE|, |∆WH |) Classification error E

Figure 3.1: Left plot shows the correlation coefficient between |PE| and |∆WH |

as a function of learning rate and decay parameters of Hebbian learning during a

quasi stochastic associative learning task. Right plot shows the average classification

error E on the task after 50 learning trials. These particular plots reflect a learning

situation where 4 cues are alternately associated with 4 distinct outcomes. 90% of

the stimulus-outcomes pairs followed a particular bijective mapping, while the other

stimulus-outcome pairs violated this mapping to introduce stochasticity.
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3.1.3 Discussion

I conclude that, while there is convincing evidence that PE is computed by some

neurons, the current evidence used to implicate this neural PE signal in learning has

alternative explanations. There are a few fMRI studies that correlate brain activity

with PE, a subset of which go further and link this to learning outcomes. However,

due to the nature of BOLD signal measured by fMRI, the correlation with PE may not

be a result of actual PE signalling, but rather a result of metabolic processes related

to synaptic plasticity: computational modelling demonstrates that the magnitude of

synaptic plasticity is highly correlated to PE, even when no PE computation takes

place during learning. This conclusion especially affects studies such as Fletcher and

colleagues’ (2001) because if the possibility of observing plasticity in fMRI is accepted,

then the results of this research become entirely consistent with Hebbian learning the-

ory. Further modelling and experimental paradigms are therefore needed to establish

the principles governing human associative learning at the implementational level. In

the next two chapters, I return to the algorithmic level to test further behavioural

evidence for PE in the context of blocking effects, and provide some novel data that is

more consistent with Hebbian learning scaled by the relative informativeness of cues.
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Chapter 4

Statistical inference of subjective

probability distributions

In a probabilistic associative task, an agent learns a subjective probability distribution

S across the outcomes following a cue. The main interest of this thesis - learning -

can be seen simply as a change of the subjective distribution with exposure to a new

stimulus-outcome pair, i.e. St+1 = St + δSt. As apparent from previous chapters, a

large number of learning theories (e.g. Rescorla et al., 1972) assume that δS is not

only a function of cue and outcome, but also S itself. Other theories disregard the

role of S in updating of itself (e.g. Hebb, 1952). These two views of learning seem

to be very different, but it has proven difficult to delineate between them. One of the

main reasons for this is that subjective distributions are difficult to infer. In other

words, there is a considerable gap between behaviour we observe and the statements

the theories make.

The simple solution to the problem would be to ask people about their subjective

probability distribution; however, when asked to provide a direct judgement of proba-

bility, people generally perform poorly (e.g. Kahneman & Tversky, 1973). Also, there

is evidence for a dissociation between direct judgement and indirect choice behaviour

(Franco-Watkins, Derks, & Dougherty, 2003). Therefore direct judgements are not a

suitable method to observe subjective distributions.

More indirect estimates of subjective distributions include cued recall, yes/no recog-
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nition, free choice and N-alternative forced choice [NAFC]. The information about S

obtained from these tasks is however limited, for the following reasons. During cued

recall tasks, the participant is required to produce outcomes associated with a given

cue. The information gained from such a procedure is limited to outcomes that have

subjective probabilities that exceed some (unknown) threshold for memory retrieval.

Yes/no recognition paradigms require the participant to judge whether a specific cue-

outcome pair has been observed, but is still subject to a memory threshold, even if

that threshold is lower than for recall. In free choice, participants select an outcome

from all possible outcomes, but the information gained is limited to which outcome has

the highest subjective probability. In the NAFC, participants select one of a subset

of N-alternative outcomes. By providing control over which alternatives are offered,

the experimenter can obtain more information about specific aspects of the subjec-

tive distribution (not just the peak). The resulting information is still, however, only

a comparison of subjective probability of N unique outcomes. In the modification to

NAFC introduced below, the N choices can include combinations of multiple outcomes,

providing yet further information about the nature of S.

Alternatively one can make assumptions about the form of S, for instance we can

assume that subjective distribution is the relative frequency of outcomes observed, S,

or distributions sampled from a model exposed to the same data as the participant.

This approach has been adopted by a number of studies (e.g. Gläscher et al., 2010).

However this approach is heavily biased by the assumptions made.

To my knowledge, a robust, assumption-free method of estimating S for individual

participants is lacking in the literature. In this chapter, I propose an experimental

paradigm and analytical techniques that enable this.

4.0.1 Task design

It is important to probe S during learning, i.e, interleaved with learning trials, rather

than only after learning. Moreover, with NAFC, it is important to present multiple

probes after each learning trial, with different choices, to better estimate S. Further-

more, the choices should include combinations of possible outcomes, which allow more
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precise estimation of S. In other words, not only could 2AFC be used to compare

pairs of outcomes (e.g. Sa < Sb ∧ Sb < Sc), revealing the rank order of individual

outcome probabilities, but it can also be used to compare the combined probability of

outcomes (e.g. Sa + Sb > Sc) to gain extra quantitative information about S. From

a set theoretical perspective, repeated NAFC can be exploited to define the smallest

set of subjective distributions consistent with a participant’s responses, together with

a set that is not consistent. In general, the greater the number of alternative choices

NAFC, the more combinations of outcomes can be included in one choice and thus

finer information about S obtained.

S (like any other probability distribution that must integrate to 1) exists on a sim-

plex, which, for NO outcomes, is a (NO − 1)-dimensional triangle positioned within

NO-dimensional space. When querying the distribution by NAFC, we effectively par-

tition the set of all subjective distributions (the simplex) into a part that complies

with the participant’s response and a part that does not, via a (NO − 2)-dimensional

surface. As a result, the proportion of compliant to non-compliant space that can be

defined from one NAFC trial will exponentially increase with NO, and exponentially

more NAFC trials will be needed to find the smallest identifiable subset of S compliant

with the responses. If an experiment is to be used with human participants, we need

to keep the number of queries to a reasonable number, i.e. ensure NO is not too large.

In the experiment described in section 4.1.3, I used NO = 3 and the number of choices

in NAFC to be two (2AFC) for practical purposes.

Each trial of an experiment of this type involves presentation of a cue and an NAFC

task for participants to select the outcome they expect. In learning trials, their choice

is followed by an outcome. If their choice matches the outcome, the participant is

rewarded1. One or more probe trials can then be interspersed with learning trials.

Probe trials involve a cue and NAFC choice, but these are not followed by an outcome,

1For practical purposes, I used points as reward, and the participant has to collect a certain number

of points to finish the experiment. It has been demonstrated that effort and time are minimized by

participants (e.g. Shenhav, Botvinick, & Cohen, 2013), therefore the points are a suitable reward for

present purposes.
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in order to minimize updating of S during the probe trials themselves.

Assuming participants are reward maximisers, they will always select the more

probable alternative during 2AFC based on S. Therefore, repeating 2AFC with differ-

ent configurations of choices will lead to the smallest identifiable subset of probability

distributions that contains the actual subjective distribution of the participant at a

given time. This approach has, however, two problems. First, the set of distributions

we can identify by repeated NAFC will still include an uncountably infinite number

of (continuous) subjective distributions without any means of distinguishing between

them. Secondly, participants sometimes contradict themselves and therefore if we treat

them as deterministic agents, the set of compliant subjective distributions might be

empty. To counter both of these problems, I adopted a probabilistic approach to infer

S. In the following section, I define a generative model for participants’ data and then

invert it to calculate the likelihood across subjective distributions.

4.0.2 Generative model

The rational approach to the task is simple: participants should pick the option that

has the higher expected utility. As the reward function is binary in our experimental

paradigm, the expected utility is simply the likelihood of the choices as estimated by S.

However, participants are not perfect deterministic agents. To counter this problem, we

formalize the decision-making model in a way that allows for quasi-stochastic decision

making. Firstly, we assume that the participants are agents sensitive to the difference

in the expected utility, being more likely to select the better option as the difference

in expected utility between the option increases. The sensitivity can vary between

participants and is characterised by a parameter β. We assume that the cause of less-

than-perfect sensitivity in decision making comes from Gaussian noise in the “read

out” of the subjective distribution. The softmax function can be used to model this,

which in the case of two alternatives becomes a simple sigmoidal function:

P (R = R1|dU) =
1

1 + e−βdU
(4.1)
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(a) κ = 1 (b) β = 1

Figure 4.1: Demonstration of the effect of decision-making parameters.

where R is the actual response made by the participant, R1 is a response 1 and dU is

a relative difference between the expected utilities defined as

dU = log
S(R1)

S(R2)
. (4.2)

This model assigns probability of 1 and 0 to the responses for extreme dU which

rarely matches human performance. This motivates extending the model to account

for residual randomness in the decision-making by adding another participant-specific

parameter κ, which corresponds to the proportion of responses that are drawn from a

Bernoulli distribution, R ∼ B(1
2
), in other words:

P (R = R1|dU) =
1− κ

2
+

κ

1 + e−βdU
(4.3)

The effect of β and κ is shown in figure 4.1.

The resulting model defines the likelihood of responses R to be produced by an

agent with decision-making parameters β and κ and a subjective distribution S.

Frequency matching

The decision-making literature, however, describes another decision-making model as

well. Frequency matching [FM] is clearly not rational, yet its use by humans is well
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documented (for review see Brehmer, 1999). When participants use FM, they effec-

tively match the probability of outcome with their responses. This decision-making

model can be defined as

P (R = R1|S(R1), S(R2))) =
S(R1)

S(R1) + S(R2)
, (4.4)

which is also a sigmoidal function. In fact, if we substitute Equation 4.2 into Equation

4.3 and equate it to 4.4, we can solve for β and κ.

1− κ
2

+
κ

1 + e
−β log

S(R1)
S(R2)

=
S(R1)

S(R1) + S(R2)
(4.5)

which is true when β = 1 and κ = 1. This means that FM is just a special case of

the rational model with noise, and therefore if we use the rational model with free

parameters for noise we can account for either of the decision-making models or their

mixture.

4.1 Methods

The task is to find the likelihood function across the subjective distribution space S for

any point being the true subjective distribution S̄ of participant p after learning trial

t. It is useful to consider the collection of all subjective distributions being inferred as

Sp,t. The generative model described by Equation 4.3 can be inverted for this purpose.

To constrain the analysis, I assume that β and κ are fixed for each participant during

the entire experiment. I can exploit this assumption to infer likelihood functions for

all learning trials from one participant, Sp,•.

The best approach would be to find L(Sp,•, βp, κp|Rp,•, Ep,•), where E is a description

of the experimental setup (i.e. history of cues, outcomes and arrangement of possible

responses), and marginalize βp and κp. However the lack of upper bound on β makes

the integral go to infinity. To circumvent this problem, I find ML(βp, κp|Sp,•, Rp,•, Ep,•)

and use the resulting estimates β̂p and κ̂p in subsequent analysis. Sp,• is an initial guess

on S̄p,• based on the rational approach to our task. It is necessary to start with a guess

because any estimate Ŝp,• would have to be function of the true values of the decision

making parameters β̄p and κ̄p which are not yet estimated.
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4.1.1 Estimation of decision-making parameters

Since there is no closed-form solution to this problem (it is over-parametrised), we need

to find argmax(L(Sp,•, Rp,•, Ep,•|βp, κp)) by methods of numerical optimisation. I used

a non-gradient based solver from MATLAB Optimisation Toolbox - fminsearch - for

this task.

The initial values for fminsearch used were β = 1 and κ = .94. During validation of

this procedure, it became apparent that the solver was failing to converge to a correct

solution. Investigation of error surfaces revealed that for low values of β̄p and κ̄p, the

error surface around the initial value is flat, preventing the solver from finding the

true minimum. To overcome this issue, I attempt optimisation 15 times with different

initial parameters. On the first attempt, I still initialize β = 1 and κ = .94; on the

second attempt, I set β = .5 and κ = .94; and thereafter I sample β ∼ U(0, 10) and

κ ∼ U(.5, 1). The motivation for the hard limits on sampling is that β < 0 corresponds

to participants’ intentionally deciding against their belief, which I assume does not

happen. For the increasing values of β, the decision-making model quickly approaches

a step function if the subjective distributions are similar to S, which I assume they

are. κ is bounded by 0 ≤ κ ≤ 1 by definition 4.3, and I ignore the lower half of the

range because the error surface for these values is very flat. It is generally not difficult

for the solver to move from high κ to low κ, while it is almost impossible for the solver

to move in the other direction. Additionally the parameters are provided in appendix

B.

Validation

I provide two validations of this model. Both of them use an artificial dataset to allow

us to compare β̄ and κ̄ with β̂ and κ̂. The validation in Figure 4.2 comes from a large

dataset and an agent following our assumptions about S. This demonstrates that the

inference procedure is correct. The validation shown in Figure 4.3 uses a dataset of

a size similar to what can be realistically obtained from human participants, and the

agent producing the dataset did not use the normative approach to the task, i.e. S was
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(a) Quality of β estimation (b) Quality of κ estimation

Figure 4.2: Demonstration of the validity of the decision-making parameters estima-

tion procedure. The datasets used were produced by rational learner and consisted of

100 instances of sampling of 100 different S̄.

(a) Quality of β estimation (b) Quality of κ estimation

Figure 4.3: Demonstration of the quality of decision-making parameters estimation

for a realistically sized datasets (10 times sampling 60 different S̄) produced by non-

rational learners.
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not obtained by calculating the relative frequency, but by an alternative, suboptimal

learning process: The learning process was either Widrow-Hoff learning or Hebbian

learning with equal probability. The free parameters of these learning models were set

as k ∼ B(4, 10) and d ∼ B(2, 20).

There are two reasons why Figure 4.3a is unsatisfactory, which at the same time

are reasons why the apparently poor estimation of β̄ does not pose a problem for our

ultimate aim of calculating the likelihood of subjective distributions. The first reason

is that a large proportion of the mis-estimation in β is due to a low value of κ̄, and

this issue disappears for larger values or κ (Figure 4.4). When κ is small, β has only

a limited impact on decision-making (see Figure 4.1a). The second reason is that as

β increases, the impact of any variance in β on decision-making decreases due to its

exponential nature (Figure 4.1a).

(a) κ̄ < .25 (b) κ̄ > .75

Figure 4.4: Demonstration of the relationship between κ̄ and the quality of β esti-

mation.

4.1.2 Calculating likelihood of subjective distributions

The second step of the inference procedure consists of using β̂p and κ̂p to calculate

the likelihood of a subjective distribution being the true subjective distribution of a
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(a) large dataset (b) ‘realistic’ dataset

Figure 4.5: Demonstration of the validity of the inference procedure for subjective

distributions.

participant, i.e:

L(Sp,• = S̄p,•|β̂p, κ̂p, Rp,•, Ep,•) . (4.6)

As there is no closed form solution to this equation, the likelihood mass is computed

numerically by computing the likelihood across the whole probability simplex using

Equation 4.3.

Validation

Similarly to Section 4.1.1, I provide two validation reports. These compare

L(Sp,t = S̄p,t|β̄, κ̄, Rp,t, Ep,t) with S̄p,t. Since Sp,t exists in a two-dimensional space, I

cannot demonstrate an elegant validation of the inference like in Section 4.1.1 because

of the high dimensionality of the resulting plot. Instead I separately plot the probability

of each of the three states the outcome can take. The resulting validation plots in figure

4.5a show how well the inference procedure finds the true probability of an outcome.

Similarly to Section 4.1.1, the first validation shown in Figure 4.5a is a result of the S

inference procedure performed on a large, normative dataset. The dataset consisted of

1000 samples from 100 different S̄, where β̄ and κ̄ were used by the inference procedure.

Figure 4.5a therefore shows only that the inference procedure is correctly implemented,
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but not that it will be actually useful with data gathered from humans.

Figure 4.5b demonstrates validation with a realistically-sized dataset. This dataset

consisted of 10 samples from 60 S̄, while the decision-making parameters were not

known, but instead estimated by the first step of our inference procedure. The inference

validates quite well, despite the severe mis-estimation of β seen in figure 4.3a. The area

of higher mis-estimation seen for the high values of S̄j on the likelihood function in

Figure 4.5b is caused by the fact that probability distributions with such values are

less frequent in the dataset due to uniform sampling of probability distributions from

a flat Dirichlet distribution.

4.1.3 Experimental paradigm

Now I have a means to estimate the likelihood of subjective distributions from multiple

2AFC probes, the next task is to design an experiment that can make use of these

analytical techniques to reveal the nature of learning. Learning can be understood as

a transfer from one subjective probability distribution to another, given some data.

The web-based experimental paradigm I developed for this purpose consists of re-

peated exposure to new data and subsequent probing of (the resulting changes in)

subjective distributions. The full experiment exactly as it was presented to the par-

ticipants can be found at https://learning.mrc-cbu.cam.ac.uk. Participants first go

through a brief training phase during which the experiment is explained to them in an

interactive manner. On each trial, participants are presented with either blue or orange

colour (cue) which has a relationship to a shape (circle/triangle/square) that will later

appear on a screen (i.e, NO = 3 outcomes). Participants are offered two boxes that

contain one or more shapes (Figure 4.6) and asked to pick the box that they think

contains the outcome. After the participant makes their choice, and if the trial is a

learning trial, the outcome appears, and the participant’s score is updated and shown.

If the trial is a probe trial, then no outcome nor score is presented.

After the initial training, participants proceed with the task in its most basic form.

Initially, all trials are single-cue learning trials. After participants reach 10 points

however, compound trials are introduced with a probability of .25. Compound trials
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Figure 4.6: Screenshot of experiment as presented to the participant. Orange bar

represents the cue on the trial. The two boxes represent the 2AFC options, the boldened

one being the one selected by the participant. The triangle at the top is the outcome

on the trial that was displayed once the participant selected a response. +0 signifies

that the response did not match the outcome and therefore no points were gained on

this learning trial.
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Figure 4.7: Illustration of the experimental procedure proposed in this chapter.

contain two cues presented simultaneously, and are to test various types of blocking

effects, as explained in Section 5.3. After participants reach 20 points, the main part

of the experiment begins.

The main phase illustrated by figure 4.7 consists of pairs of blocks probing the

subjective distributions and a learning trial between them (i.e. within the pair). This

allows us to infer S before and after the learning trial and therefore look at the change

of S caused by the learning trial. An extra learning trial is introduced between the

pairs of probing blocks (i.e. outside the pair) for practical purposes. The change in

S is not inferred for this trial. The learning trials within a pair of probing blocks are

compound learning trials (both cues presented at the same time) with probability of

.5 else they are single-cue trials. The learning trials outside pairs of probing blocks are

always single-cue trials to make the task easier. The learning trials are the only trials

after which the outcome is displayed to the participant.

To maximise the information gain, each block starts with 2AFC between two ran-

dom single outcomes. The subsequent 2AFC options are selected to gain the maximum

amount of information about the participant’s subjective distribution from the set-

theoretical point of view described in Section 4.0.1, simply by forcing the participant

to decide between options that will eliminate the largest set of subjective probability

distributions until the combinations that can further decrease the set compliant with
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responses are exhausted2. These trials are intermixed with random trials to increase

the amount of information collected and to make it harder for the participant to detect

a pattern in the probing blocks. On average, each probing block consists of 10 trials

equally distributed between the two cues. Probing of both cues is randomly inter-

mixed to further remove structure from the task. Both probing blocks before and after

a learning trial consist of identical trials, therefore on average a pair of probing blocks

consists of 20 probing trials with a learning trial in the middle. This is necessary to

compare the likelihood density before and after a learning trial as the quality of the

density estimation depends on the trials used for probing. However, both the trial or-

der and arrangement on the screen are permuted before the probing block is repeated

to decrease the participant’s ability to recall their own responses. None of twelve pilot

participants realized that the two probing blocks in a pair consisted of identical trials.

Data collection

The real data were collected and analysed according to the procedures described in

Chapter 4. The experiment is readily accessible at https://learning.mrc-cbu.cam.ac.uk

including the source code. The dataset was collected online, with participants recruited

via FaceBook advertisements to maximise the number of participants. These adverts

asked participants to “help researchers learn about brains”. No payment was made

to participants in order to make the motivation more similar to the naturalistic latent

learning. Because of constraints on ethical approval for this recruitment, no personal

information was collected. The only demographic information on the sample is that: 1)

the advertisement was only displayed in English speaking countries, 2) 78% of people

who saw the advertisement were female and 3) the most represented age-group was

45-55 years old. No demographic information on the people who actually participated

(as opposed to just saw the advertisement) are available.

There is no doubt that the sample was self-selected to a degree and that there are

2This approach assumes the participant’s decision-making is deterministic and is not optimal in

a probabilistic context. Designing an optimal information gain procedure in a probabilistic context

would be a useful extension of the project.
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N

participants 1,990

trials 214,508

subjective distributions inferred 20,618

compound learning instances 5,132

Table 4.1: Amounts of data collected and analysed. Each participant contributed a

different amounts of data and the main focus was on compound learning trials.

ways in which they systematically differ from the population; however, we believe that

the sampling bias exists in many other studies too, such as those done only on student

volunteers studying for psychology degrees.

Many participants left the experiment before it has finished, meaning that the

amount of data differs greatly between participants. This is not a problem issue for the

analysis methods, because I only examine aggregate performance of the entire sample.

Various counts of the sample are provided in Table 4.1. Note that the number of par-

ticipants is not as relevant as the total number of trials – more specifically, the number

of compound learning trials from which we can infer the subjective probability distri-

bution before and after learning. The average performance on the task was 63.37%,

with chance performance being 50%. I did not exclude any participants, even when

they performed significantly worse than chance. The performance metric was obtained

by comparison against a simple frequentist model, that is rational in the context of our

task.

4.2 Discussion

I have described an experimental procedure for probing subjective distributions, com-

bined with a method for statistical inference, which I believe offers better insight into

the nature of human learning. Simulations show that even if our assumptions of ratio-

nal behaviour are violated, and there is a limited amount of data, the procedure still

provides a reasonable probabilistic estimate of the subjective distributions held by an
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agent. This approach, that is fully probabilistic, provides significant advantage over

existing approaches such as Kalman filter, which are not suitable for inference over

probability space, not parameter-free and inadequate for capturing non-parametric

distributions.

These estimates can be useful for research into the theory of learning in probabilistic

associative tasks because they are not biased by the process that generated them, and

therefore might provide new insights about the processes that drive learning. Moreover

as the estimates are probabilistic, they provide opportunity for probabilistic approach

in further analysis by preserving entire distributions as opposed to only point estimates.

The main limitation of the method presented here is that I assume subjective dis-

tributions to be static during the periods of testing when no outcomes nor reward are

present. This is likely not to be true in human participants (e.g. Bridge & Paller,

2012). However I am not aware of any method of estimation of subjective distributions

which does not suffer from this problem.

In the next chapter, I apply this inference method to a large online dataset to

delineate between learning theories driven by PE and those that are not.
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Chapter 5

Is probabilistic associative learning

driven by PE?

Chapter 4 described a probabilistic associative learning paradigm and inference method

for estimating subjective probabilities. In this chapter, I describe how certain types of

compound trials can produce different types of blocking, which are able to distinguish

between PE-based and non-PE based learning (unlike conventional paradigms and

analyses). In particular, I define a new type of blocking, which is more discriminative

than conventional blocking, and demonstrate how the results from a large online dataset

are inconsistent with PE-based learning.

5.1 Blocking

Ever since Kamin’s (1969) blocking effect became mainstream, learning theory became

dominated by models that learn by correcting PE (e.g. Rescorla et al., 1972). This was

seen as necessary given the inability of older non-PE models of learning (e.g. Hebb,

1952) to explain the blocking effect. This paradigm-shift makes blocking probably the

most influential effect in the history of learning theory.

However, there are two reasons why I do not consider blocking to be sufficient

evidence for PE as the driving force behind learning. Firstly, as elaborated in Chapter

2, Kamin’s classic findings can potentially be explained by non-PE learning scaled by
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relative informativeness of a cue αi (defined by Equation 2.16).

Secondly, recent research indicates that blocking as described by Kamin (1969)

is not as replicable as many believe (Maes et al., 2016). Through the lengthy series

of 17 experiments, Maes and colleagues (2016) demonstrated that the blocking effect

either has important boundary conditions or requirements that are not described by

the classic definition of blocking.

Furthermore I see a fundamental problem in the connection between learning theo-

ries and behaviour. While almost all mechanistic theories of learning describe learning

as a change of weights, it is unclear what the weights are, how can we measure them,

or how they translate to behaviour. Therefore there is a need to redefine blocking and

other predictions of learning theories in a context that is invariant to the process of

translating weights into behaviour.

The methodology introduced in Chapter 4 enables the translation from behaviour

into subjective probability distributions. In the first, theoretical part of this chapter,

I first discuss the connection between weights and subjective probability distributions.

This allows the identification of the properties of learning theories with respect to

subjective probability distributions, explicitly linking the learning theories to the be-

haviour and data. I then redefine blocking effect in terms of motion in the space of

subjective probability distributions. Crucially I extend the blocking effect to com-

pound learning with any two subjective probability distributions involved, as opposed

to only one specific configuration considered in Kamin’s classic blocking paradigms.

When generalized in this way, PE and non-PE learning theories predict qualitatively

different, but still correlated outcomes during blocking. Next, I describe a novel type

of blocking for which the predictions of the two classes of learning theories differ in a

more fundamental way.

In the second, empirical part of this chapter, I investigate whether these two block-

ing effects actually occur in a large dataset collected on-line, using a paradigm like that

described in Chapter 4 (I also test for Kamin’s classic blocking effect). I then deter-

mine whether the results are better explained by PE-driven learning, or the Hebbian

learning scaled by relative informativeness that was proposed in Section 2.3.3.
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From weights to responses

Most of the prominent theories of associative learning (e.g. Rescorla et al., 1972)

describe learning as a process by which weights in an associative network are changed.

However, the weights do not have a clear correspondence to any property of biological

systems that are responsible for associative learning, and are not directly measurable.

Instead, in human associative learning, we observe responses. Therefore to reconcile

the theory with the data we need to bridge the gap between weights and responses.

The main issue in this endeavour is that there are multiple processes that need to

take place in the brain to produce responses based on weights. There are also processes

that take place at the same time as learning and affect how the learning process will

manifest in the data. Firstly, the responses we observe in our experiments and that

make up our data are a result of decision-making. Secondly, the decision-making is

not based on weights, but rather on some probability-like interpretation of weights,

i.e. the subjective probability distributions described in Chapter 4. These subjective

probability distributions are a result of a read-out function applied to the weights.

Lastly, we need to account for homeostatic processes that cause forgetting and weight

normalization that we can capture as a single decay process. Neither of these processes

has been described well enough to allow us to simply take a model of that process from

the literature.

In Chapter 4, I proposed a method of inferring the basic properties of a participant’s

decision making relevant to our task. Combined with the experimental procedure de-

scribed also in Chapter 4, this allows me to infer the likelihood of subjective probability

distributions at a given point in time. This means effectively inverting the decision-

making function.

Unfortunately, the read-out function can not be inverted. This is because weights

are bounded by the decay process that acts gradually on the weights to normalize and

equalize them, thus while weights are approximately bound to a constant, the bound

is soft. On the other hand, the subjective probability distributions must be bounded

by the axioms of probability to allow for effective decision-making. This bound can be
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considered hard in contrast with the bound on weights. As a result, for any subjective

probability distribution there is an infinite number of weight vectors that can produce

it through the read-out function. In the theoretical part of this chapter, I consider the

learning dynamics of systems with two broad classes of read-out function that I find

plausible. The first one is a simple linear normalisation. As non-linear normalisation

is too large a class of normalising functions, for the second one, I limit analysis to the

softmax function.

The decay process acting on the weights, being up-stream in the processing pipeline

from read-out, cannot be uniquely determined for the same reasons as above. To keep

the analysis relatively assumption-free, I consider both linear and non-linear decay.

Non-linear decay is not a standard feature of learning models, despite the fact that it

seems more likely than the standard linear decay process. The particular implementa-

tion I used in the simulations here is:

Wi,t+1 = Wi,t(1− d) + softmax(Wi,t, τ)d (5.1)

where Wi,t is a weight vector corresponding to cue i at time t, τ is temperature param-

eter of the softmax function and d is the decay ratio. This process was applied to all

weight vectors after each trial (even when a particular cue was not shown). The effect

of this decay algorithm is to move the weights towards their softmax transformation

by proportion d.

5.2 Theory of learning in subjective probability space

Any point in subjective probability space corresponds to a particular subjective prob-

ability distribution S, therefore this space can be understood as a probability simplex.

Due to the axioms of probability, any discrete probability distribution with N states

is located on an N − 1 dimensional hyper-triangle. To offer the reader an intuitive

understanding that is only possible in a two-dimensional space (and in keeping with

the three outcomes used in the later experiment), consider the case of N = 3. Any

discrete probability distribution S[o1,o2,o3] over the probabilities of the three outcomes
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Figure 5.1: The learning function L can be understood as a vector movement along

the probability simplex defined by the weights, cue, outcome and other unknown vari-

ables at the time t.

can therefore also be expressed by its location on the probability simplex S[x,y]. The

[x, y] coordinate system I use here has the origin halfway along the centre of the bottom

side of the triangle.

With this 2D representation, learning and decay are characterised by movements

between points on the simplex. As illustrated in Figure 5.1, the learning function, L is

a function of weights W before learning, cue c, outcome o and other unknown variables,

?, at time t that produce an R2-valued motion vector, ∆S, along the simplex:

L(Wt, ct, ot, ?) = ∆St = St − St+1 ∈ R2 (5.2)

A single vector ∆St does not tell us much about learning; however, a set of ∆St

vectors across the entire simplex provide an approximate description of L. The main

problem with this approach is the curse of dimensionality; as described in Chapter 4,

a significant number of trials (5-20 depending on required accuracy) are required to

describe a subjective distribution at a single time-point, thus necessitating an imprac-

tical number of trials per participant. We will address this issue by replacing Wt, a 3D

unobservable unbounded vector with the 2D observable bounded vector S
[x,y]
t . While

this requires assumptions about the read-out function, I will do this for a range of
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read-out functions and focus on those properties of L that hold across the different

realizations of read-out.

However, we have yet another dimension: the specific cue presented on a trial.

We can further decrease the dimensionality by coregistering the simplices between two

cues: one for the cue presented (learning) and one for a cue not presented (forgetting).

Both of the simplices have the outcome presented at a given trial at their top corner

(indicated in subsequent figures by a red dot).

5.2.1 Learning as a flow

The set of the coregistered vectors across simplices constitute a flow diagram identical

to sampling from the function L. It is useful to first produce synthetic flow diagrams for

various configurations of single-cue learning, before looking at compound learning or

the real data. Figure 5.2 shows the flow across simplices for Rescorla-Wagner learning

with various configurations of read-out and decay processes. The most simple learning

dynamics using linear decay and linear read-out shown in sub-plot a) simply demon-

strate that the subjective probability distributions for the presented cue move towards

the outcome presented. Sub-plot b) shows the corresponding flow for a non-presented

cue: here, the read-out and decay processes perfectly counteract each other and the

only movement left is random noise.

Sub-plots c) and d) show the same learning and forgetting dynamics with linear

read-out and softmax decay processes. This time, forgetting is apparent in non-linear

motion towards the centre of the simplex. In other words, the probability distribution

becomes flat for non-presented cues. Interestingly, the non-linear motion depends on

the τ parameter.

Finally, sub-plots e) and f) show how the motion for softmax read-out and linear

decay becomes non-linear for both learning and forgetting. An interesting feature of

sub-plot e) is that the attractor on the simplex has now moved from the top corner to-

wards the centre. This indicates that extreme probability distributions can no longer be

supported under this read-out process. The y-coordinate of the attractor is dependent

on the decay parameter d and τ .
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In conclusion, there is a significant degree of variation in learning dynamics from

the Rescorla-Wagner learning rule incurred by changing assumptions about memory

that are not explicitly mentioned in the model, but necessary to simulate human per-

formance. The learning dynamics are characterised by the y-coordinate of the attractor

and the non-linearity of approach to the attractor for the simplices corresponding to

the presented cue. The forgetting dynamics are characterised by the presence of an

attractor and approach towards the attractor for the simplices corresponding to a non-

presented cue.

Figure 5.3, on the other hand, shows the dynamics arising from Hebbian learning.

It is immediately apparent that the characteristics of dynamics are very similar to those

for Rescorla-Wagner learning. While the relationship between the free parameters in

the learning models and the characteristics of the dynamics is slightly different for

Hebbian and Rescorla-Wagner learning, the variation in those dynamics is the same

for both types of learning models. Indeed, it can be analytically demonstrated that in

the probability space any dynamics resulting from Rescorla-Wagner learning can also

be a result of Hebbian learning. While this statement is not true for the weight-space

(see proof in Section 3.1.1), we can only observe probability-space in behavioural data.

Studying the flow dynamics across simplices for PE-driven and non-PE learning

algorithms demonstrates that single-cue learning cannot help us to delineate between

these two classes of learning algorithms. However, understanding single-cue learning

as a flow across a probability simplex equips us with analytical tools helpful for similar

investigation in compound learning.
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Figure 5.2: Simulated Rescorla-Wagner learning dynamics across probability sim-

plices for different assumptions about decay and read-out processes. Learning and

Forgetting labels correspond merely to whether or not the given cue was present on

the particular trial. Red dots mark the outcome that was presented on the learning

trial.
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Figure 5.3: Simulated Hebbian learning dynamics across probability simplices for

different assumptions about decay and read-out processes. Learning and Forgetting

labels correspond merely to whether or not the given cue was present on the particular

trial. Red dot marks the outcome that was presented on the learning trial.
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5.3 Compound learning

To look beyond the above case of single-cue learning, I first generalize the blocking

effect to a general associative learning situation and define all variables involved. Then

I describe another effect that can be helpful to delineate the PE and non-PE classes of

learning theories but to our knowledge has not been studied before.

Blocking as described by Kamin (1969) is an effect quantified by the difference in

learning to associate an outcome with a cue (cue A) that is presented in compound with

another cue (cue B), as a function of whether the other cue (B) has previously been

paired with that outcome (experimental condition) or not (condition condition). The

rationale behind the blocking effect is that in the experimental condition the outcome

is already predicted, therefore there is less PE, therefore there is less learning of the

new cue.

This interpretation rests on the following assumptions: 1) the probability distri-

bution across outcomes for a novel cue is flat; 2) the probability distribution across

outcomes for an already-associated cue is predictive of the outcome to some degree.

In terms of the above simplex conceptualisation, cue A has a subjective probability

distribution located in the centre of mass of the simplex (i.e. distribution is flat), while

cue B is either located at the attractor of the learning simplex if it has been already

learnt (experimental condition) or in the centre of mass if it is novel (control group).

Therefore Kamin’s statement can be reformulated as: The flow of cue A’s subjective

probability distribution from the simplex centre towards the attractor is slower when

cue B’s subjective probability distribution is located at the attractor than it is when

cue B’s subjective probability distribution lies at the centre of the simplex.

From this definition, it can be seen that blocking can equally be explained by the

relative informativeness account, as well as the classic PE account: Cue B has higher

informativeness when it lies away from the centre of the simplex (i.e, towards the

attractor in the experimental condition), and therefore cue B effectively reduces the

velocity of flow for any subjective probability distribution associated with cue A.
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Figure 5.4: Entropy across probability simplex.

5.3.1 Generalised blocking

The classic blocking effect is just one example of blocking. Blocking can be generalized

as the distribution of the motion of subjective distribution S in the y direction, which is

a function of the subjective distribution associated with the other cue in the compound,

¬S[x,y]. Because looking at ∆S (a 4D object) as a function of ¬S (a 2D object) is

impractical, it is essential to derive a lower-dimensional property of ∆S that captures

the effect of interest. Now the presence of an attractor within the simplex, which

follows from axioms of probability, dictates that the mean y component of motion

across a simplex must be 0. Therefore, rather than affecting the mean, the influence of

¬S[x,y] should affect the skewness, γ, of the distribution obtained by sampling motion

vectors. Under this definition of blocking, PE learning always dictates a decrease in

γ(∆S[y]) as ¬S[y] increases. On the other hand, relative informativeness implies that

γ(|∆S[y]|) is scaled by the entropy of ¬S; in other words, as ¬S[x,y] moves away from

the simplex centre of mass (see Figure 5.4 for illustration), γ(|∆S[y]|) decreases.

Because γ(∆S[y]) and γ(|∆S[y]|) are different, rendering a direct comparison be-

tween the two hypotheses difficult. Nonetheless, because Hebbian learning predicts

that the direction of the motion is towards the attractor located above the centre of

mass, the conjunction of relative informativeness with Hebbian learning actually pre-

dicts a decrease of γ(∆S[y]) as ¬S[x,y] moves away from the centre.

79



5.3.2 False blocking

Given that the distribution of motion in the y dimension as a function of ¬S[x,y] seems

to be an interesting way to dissociate Rescorla-Wagner learning from Hebbian learning

scaled by informativeness, it may also be fruitful to investigate motion in the x dimen-

sion. I call this effect “false blocking”, as it has important similarities and differences

from the standard blocking effect. Similar to the above generalized blocking effect, it is

difficult to illustrate generalised false blocking effect as 4D flow that is a function of 2D

cues. For intuitive understanding of this effect, we have to consider specific conditions,

analogous to Kamin’s (1969) work.

The crucial difference between normal blocking and false blocking is that, in false

blocking, both of the cues presented have already been associated with outcomes.

Consider a compound learning situation, illustrated in Figure 5.5, in which cue A

has been associated mostly with outcome 2 and cue B mostly with outcome 1. The

question is what happens when the compound cue AB is presented along with outcome

2. According to both Rescorla-Wagner and Hebbian learning theories, the association

between both of the cues and outcome 2 should increase and the association with

other outcomes should decrease. However, the theories differ on the relative change

in associative strength between cue A and outcomes 1 and 3. According to Hebbian

learning, the association between cue A and both outcomes 1 and 3 should decrease

equally due to decay. This is also true even when we introduce relative informativeness

as a scaling factor on learning rate, because relative informativeness is the same for

both cues. Rescorla-Wagner learning, on the other hand, predicts that the association

between cue A and outcome 1 should decrease more than the association between A and

outcome 3. The reasoning behind this is that outcome 1 was more strongly predicted

than outcome 3 during the compound learning trial because of its prior association with

cue B. But because neither outcome 1 or 3 occurred, there was more PE for outcome

1, which implies more learning.
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Figure 5.5: Example distributions associated with the cues A and B to outcomes 1-3

prior to the learning trial in false blocking paradigm.

To generalise false blocking a step further, and in terms of simplex flow, consider

any distribution associated with cue A while keeping the cue B distribution constant at

P (o|c = B) = [2/3, 1/6, 1/6]. Figure 5.6 shows that PE-driven learning causes the flow

to be “pushed away” from the corner of the triangle that corresponds to the outcome

predicted by cue B. On the other hand, it is impossible for non-PE learning to break

the symmetry of flow with respect to the y axis even when relative informativeness is

introduced as a scaling factor as it is symmetrical across the simplex in respect to the

y axis.

Rescorla-Wagner Hebbian Hebbian + relative informativeness

Figure 5.6: Learning dynamics across different learning rules in AB-o2 compound

learning scenario for any distribution associated with cue A and a distribution that

predicts o1 (bottom left corner of triangle) associated with cue B.

The asymmetry of flow in respect to the y axis is a defining feature of PE-driven

learning for the false blocking effect. Similarly to our conceptualisation of blocking, this
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asymmetry can be characterised as the skew γ of the distribution of the x-component of

∆S as a function of ¬S. Therefore I treat ¬S as the independent variable, but collapse

the flow (dependent variable) into a single dimension by only considering its skewness

in the dimension of our interest (y for generalised blocking and x for false blocking).

The prediction of Hebbian learning for false blocking is identical to its prediction for

the generalized blocking effect.

5.4 Methods

As discussed above, it is informative to examine the skew of the distribution of move-

ment vectors for a cue as a function of the probability distribution for the other cue,

formally:

γ(∆S) = f(¬S) . (5.3)

First, however we need to find out ∆S. The methods introduced in Chapter 4 were

developed to make these variables observable. However, instead of actual measure-

ments, we only obtain likelihood functions of the actual subjective distribution lying

on a certain portion of the probability simplex. It is possible to obtain reasonable esti-

mates of S by Maximum Likelihood estimation, and then determine the other variables

from those estimates. However it is much more accurate to marginalize the nuisance

variables. The distribution of motion vectors is

MD(d,¬S[x,y]) =

∫
t

∫
S
[x]
t

∫
S
[y]
t

∫
S
[x]

t′

∫
S
[y]
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δ
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[D]
t , d

)
L(S
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t ) dS
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t′ dS

[x]
t′ dS

[y]
t dS

[x]
t dt (5.4)

where δ is a Kronecker delta function, D is a dimension of ∆S of our interest (i.e. y

for blocking and x for false blocking ) and d is an index in D. Dimension t refers to all

pairs of subjective distributions, collapsed across participants, such that t is the state

before learning trial and t′ is the state after the trial. This function provides us with a

three dimensional output, where two dimensions correspond to ¬S and the third one

to the ∆S in dimension D.
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Because relative informativeness does not affect the directionality of motion, just

its magnitude, we have a complementary function:

|M |D(d,¬S[x,y]) =

∫
t

∫
S
[x]
t

∫
S
[y]
t

∫
S
[x]

t′

∫
S
[y]

t′

δ
(
|S[D]
t′ − S

[D]
t |, d

)
L(S

[x,y]
t )L(S

[x,y]
t′ )L(¬S[x,y]

t ) dS
[y]
t′ dS

[x]
t′ dS

[y]
t dS

[x]
t dt (5.5)

that describes the L1 norm of the motion.

The metric of interest over MD and |M |D is its skewness as a function of ¬S[x,y].

However, our data are not data points, but rather a distribution, therefore we need to

generalise Pearson’s moment coefficient of skewness to probabilistic contexts to get the

third standardized moment of any arbitrary distribution A:

γ(A) =

∫
x

(A(x)− µ(A))3 dx∫
x
A(x) dx

. (5.6)

where

µ(A) =

∫
x

xA(x) dx . (5.7)

Finally we can look at the skewness of the functions M [D] and |M |[D] which will be

taken along the d dimension (index of D) while the two dimensions corresponding to

coordinates on ¬S are conserved.

I used Monte Carlo [MC] methods to remove any possible biases created by the

experimental paradigm and to approximate the null distribution during hypothesis

testing. I repeat the whole process 100 times with permuted ¬St along the t dimension,

and then take the mean of the metrics of interest for each point on ¬S across the MC

samples and subtract it from the metrics obtained from the human data. The resulting

surfaces are fit by a linear regression using the L1 norm of a difference between model

and data as the error metric.

To estimate the probability of type I error, I fit the models to each MC sample and

then fit a Gaussian distribution to the best-fit parameters. The probability of type I

error is the value of the cumulative density function of the fitted distribution at the

parameter value best-fitting the real data.
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Figure 5.7: The sections of simplex used to do analysis analogous to classic Kamin’s

(1969) blocking experiment. The red dot corresponds to the outcome that has been

presented on a trial.

Model fitting

Firstly, I attempt to replicate the classic blocking effect as defined by Kamin (1969).

In the present framework, this means testing the difference in skew of the distribution

of the y-component of motion across S between the centre of mass of ¬S and the tip of

¬S that corresponds to the outcome observed on the trial. This is illustrated in Figure

5.7. The likelihood-weighted mean is taken of both the tip and centre sections of the

simplex.

After looking for the classic blocking effect, I tested for blocking and false blocking

effects generalized to the entire ¬S. As explained above, PE-learning theories predict

that, the more an outcome is predicted by ¬S, the less motion towards the outcome

happens on S. Purely Hebbian learning predicts that the mean skew should be positive

but constant across ¬S. Finally, Hebbian learning scaled by relative-informativeness

predicts that |∆S| is inversely related to the entropy of ¬S. Based on these predictions

I formulated four hypotheses in Table 5.1, expressed as linear regressions of skewness

as a function of x or y. These hypotheses are tested by whether there is evidence that

the slope of the regression, a, is significantly negative.
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Hypothesis Effect Model Prediction

PE learning

blocking γ(∆S[y]) = ay + c a ∈ R−

false blocking γ(∆S[x]) = ax+ c a ∈ R−

RI

blocking γ(|∆S[y]|) = a×H(¬S[x,y]) + c a ∈ R−

false blocking γ(|∆S[x]|) = a×H(¬S[x,y]) + c a ∈ R−

Table 5.1: Hypotheses formulated as linear models. Blocking and false blocking effects

referred to in this table relate to effects generalized across probability space. RI refers

to relative informativeness. H is the entropy function.

As the methods are novel and largely untested, I verified that the predicted pat-

tern of results holds using artificial participants. The artificial participants were pro-

grammed to follow various learning algorithms when completing the experiment and

their performance was then analysed with the techniques presented here. In all cases, I

was able to correctly identify the learning algorithm used by the artificial participants.

Data exploration

Before analysing the dataset for the main effects of interest, I performed basic checks

to confirm the validity of the experimental paradigm. Firstly, the likelihood of correct

responses increased orderly with the difference between the relative empirical prob-

ability of the options in the 2AFC task, as demonstrated by Figure 5.8a. Secondly,

participants’ performance improved rapidly during first few dozen trials until it reached

asymptote of approximately %60 correct responses around trial 25 (see Figure 5.8b).

Thirdly, the 2AFC task is significantly easier when two outcomes are present in one of

the boxes, Figure 5.8c, as expected.
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(a) Likelihood of participant selecting the right box as a function of the difference between

empirical probabilities of the outcome(s) contained within left and right boxes (δP ).

(b) Likelihood of participant making a correct response as a function of trial number.

(c) Likelihood of participant making a correct response split between trials that had two

outcomes as one of the response options (double forced choice) and those that didn’t.

Figure 5.8: Basic tests confirming validity of the experimental paradigm.
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5.5 Results

Models were tested by comparing the slope parameter a estimated from the data against

the null distribution of values estimated by MC methods. In all cases, a is predicted

to be less than zero. For the classic blocking effect a difference in mean y-direction

skew was compared between the centre of triangle and its tip, with the PE account

predicting the tip of triangle to produce larger skews.

There was no evidence for a classic blocking effect (a = µcentre − µtip = 13.39,

µ(aMC) ≈ 0; σ(aMC) = 46.78, p(a ∼ aMC) = .39), therefore the null hypothesis of

no difference between those two areas (as for example predicted by simple Hebbian

learning) was favoured.

The results for the further hypotheses described in Table 5.1 are shown in Table

1. The PE-based models did not fit the data well, with the estimate for false blocking

actually being of opposite sign (positive) to the predictions. The Hebbian models scaled

by relative informativeness, on the other hand, produced negative values of a whose

probability of occurring by chance (from the null distribution) approached 0. These

patterns have held up even when the data was split into high and low performing

participants.
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Hypothesis Effect a µ(aMC) σ(aMC) p(a ∼ aMC)

PE learning

blocking -.04 -.01 .12 .39

false blocking .26 0 .01 1

RI

blocking -0.42 0 0.06 0

false blocking -.16 0 0.03 0

Table 5.2: Results of hypothesis testing. a is a free parameter fitted and MC refers

to distribution of values of a from Monte Carlo sampling. Blocking and false blocking

effects referred to in this table relate to effects generalized across probability space. RI

refers to relative informativeness.

5.5.1 Post-hoc analysis

I have explored whether the pattern demonstrated in Table 1 holds across the entire

dataset. In particular it is of interest whether this pattern holds separately for high-

performers and low performers. For this purpose I have identified top and bottom

halves of participants according to their performance. However as a large number of

participants with low score are those who have left the experiment early (haven’t com-

pleted many trials) the participant with less than 100 trials completed were excluded

from the dataset before the split. The median performance in the reduced dataset is

58.6% correct and the two groups used for post-hoc analysis contain 376 participants

each.
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5.6 Discussion

The present chapter showed that Hebbian learning scaled by the relative informative-

ness of cues is better than Rescorla-Wagner (Rescorla et al., 1972) learning based on

PE in terms of fitting data from a compound cue learning experiment.

I derived a novel approach for understanding learning as a flow in probability space.

This approach allowed me to demonstrate that the location of the attractor in the prob-

ability space, and non-linearity of the flow to the attractor, are good characterisations

of learning. In the theoretical section, I showed that, while it is impossible to dis-

tinguish between the two classes of learning theories in context of single-cue learning,

compound learning has a potential to resolve this issue.

Blocking as defined by Kamin (1969), which was introduced in Chapter 1 as key

evidence in favour of PE-driven learning, can also be explained by Hebbian learning

when scaled by relative informativeness that was introduced in Chapter 2. The inde-

pendent variable in Kamin’s definition of blocking has only two levels, which leaves

lot of space for alternative explanations. To avoid this drawback, I generalized the

blocking effect to the entire probability space. This definition of blocking provided us

with an observable effect on which predictions of the two classes of theories, though

correlated, can differ qualitatively. Moreover, the value of the independent variable

in blocking experiments is traditionally not observed but rather just assumed based

on the conditioning schedule. Here I introduce techniques to observe the independent

variable.

The similarity of predictions made by the two classes of learning theories even for

generalized blocking led me to derive a novel effect that I called false blocking, for

which the predictions of the two classes of learning theories now become distinct.

In the empirical part of the chapter, I described data I have collected from a large

online study. Despite the non-conclusiveness of the classic blocking effect as defined

by Kamin (1969), I looked for this effect in our data because of recent concerns over

its replicability (Maes et al., 2016). This classic effect was not significant in our data,

though it was in the predicted direction numerically.
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More importantly, I tested blocking and false blocking, generalized to the entire

probability space, against the two hypotheses outlined in the theoretical section: PE-

driven learning and Hebbian learning scaled by relative informativeness. For both

effects, PE-driven learning was not supported (and for false blocking, the pattern of

data was numerically opposite to what would be expected).

The fits provided by the relative informativeness model were highly significantly

better than chance for both generalized blocking and false blocking. Therefore, I con-

clude that relative informativeness and Hebbian learning are a better explanation of

our data than PE-driven learning (or pure Hebbian learning alone).

While the lack of blocking effect could be due to poor sensitivity of the present

analysis, this seems unlikely given that the analysis was sufficiently sensitive to detect

the predicted effects of relative informativeness. Moreover the false blocking effect was

detected, which opposes the very notion on which blocking is based.

The results presented in this chapter are heavily reliant on methods that I designed

for this particular task and introduced in Chapter 4. The methods could not have

been tested before because they require a specific type of dataset that was collected for

the first time (though I validated the whole analysis pipeline by simulating artificial

participants). The reason for this novel and untested method is that comprehensive

exploration of the relationship of motion across S as a function of ¬S cannot be done

in any other way. Conventional methods only test specific points in the probability

space, so that many individual experiments probing different points in the probability

space would be required to provide support to the relative informativeness hypothesis

presented here. Since the exploratory step is finished, the logical next step is to replicate

our results using conventional methods for the points in probability space that provide

greatest difference between the hypotheses of interest.

Another avenue of future research would be to use neuroimaging to identify com-

ponents of brain activity correlated with relative informativeness. This can be done by

replication of the experiment in either fMRI or MEG. The brain correlates of relative

informativeness correlated could be subsequently used to explain variance in learning

and compared in their ability to do so with any brain correlates of PE.
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In conclusion, relative informativeness provides a good model of the learning ob-

served in the present data, while there is no evidence for a role of PE.
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Chapter 6

Discussion

This thesis aims to evaluate the role of Prediction Error [PE] in human probabilistic

associative learning. David Marr’s levels of analysis (1982) provide a useful framework

to structure this investigation, as the answer to the main question of this thesis might

be different at each level.

Chapter 2 started by investigating the associability effect described by Mackintosh

(1975), who modified the algorithmic-level Rescorla-Wagner (Rescorla et al., 1972)

model of associative learning to explain his experimental findings. I derived a rational

model (computational-level) of the task as well as a less computationally demanding

algorithmic mechanism that explains the associability effect without using PE, based

on scaling Hebbian learning by the informativeness of a cue. In Chapter 3, I examined

the evidence for PE in learning on the implementational (neural) level and concluded

that the evidence is less robust than often assumed.

Associative learning theories describe a transition from one state of memory to

another, but the experiments used to test the theories look only at the combined

effect of many learning trials. In Chapter 4, I addressed this problem by introducing

a paradigm and an inference method for how to measure participants’ beliefs – the

subjective probability distribution - before and after each learning trial. This method

was exploited in Chapter 5 to test more directly whether PE is the driving force behind

learning. The results from a large online dataset showed that learning, particularly with

compound cues, is better explained by the idea of relative informativeness introduced
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in Chapter 2 than by a PE-driven learning rule. In the process, I described a way

to generalise Kamin’s blocking effect, and developed a new type of blocking – false

blocking – that is much better suited to distinguishing these types of learning theories.

I review these findings in more detail below, before considering future directions.

6.1 Summary

Chapter 2 analysed a set of experiments by Greve and colleagues (2014) that investi-

gated the effects of cue consistency on learning. After giving a rational (computational-

level) description of the effects of cue consistency, I proved that standard and popu-

lar algorithmic-level approaches - Hebbian learning and Rescorla-Wagner (PE-driven)

learning - cannot explain these data. I then considered Mackintosh’s theory to explain

such effects, which introduces an associability parameter into the standard Rescorla-

Wagner model (Mackintosh, 1975). However, the weaknesses of Mackintosh’s theory lie

in necessitating the estimation of an extra associability parameter for each cue present

in the environment. This parameter has to be estimated with every exposure to a cue

and kept in memory, which is computationally demanding. To provide an alternative

to this approach, I considered an approximation of the rational description which is

based on scaling learning by informativeness (inverse entropy) of a cue. This is easy to

compute at any instance simply from the strength of associations with the cue. More-

over, this approach can be extended to the situations of compound learning - scaling

the learning by informativeness of a cue relative to the other cues present on a trial –

which was used in Chapter 5 to explain the classic blocking effects of Kamin (1969)

without the need for PE (i.e. Hebbian learning scaled by relative informativeness).

In Chapter 3, I reviewed the single cell recordings first obtained by Schultz, Dayan

and Montague (1997) that show that a proportion of neurons in the ventral midbrain

signal PE. This evidence is often used to implicate the role of PE in learning, however

there is actually very little research directly linking this PE signal to learning. Demon-

strating this link is very difficult because no neurons that compute PE have been found

in lower animals so far, thus a clear link between PE computation, synaptic plasticity
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and behaviour cannot be established in a simple model species in the same way that

Eric Kandel (e.g. Kandel, 2001) established the link between synaptic plasticity and

behaviour. Demonstrating this link in higher species is problematic because of the high

dimensionality of cortical representations, which make linking PE from environment,

neural signal and synaptic plasticity and/or behaviour very difficult. To counter this

issue, some researchers have resorted to using neuroimaging instead of electrophysiol-

ogy.

There have been only a few studies that have attempted to identify neuroimaging

correlates of PE and link those correlates to behavioural change (e.g. Gläscher et al.,

2010; Nassar et al., 2010). They suffer from a number of problems however. Firstly,

the PE correlate is being identified at the level of neuronal populations, not individual

neurons, therefore they are not directly comparable with the results of Schultz and

colleagues (1997). This is a critical issue, because the argument of Schultz and col-

leagues that those particular neurons signal PE is critically reliant on demonstrating

the decrease in spiking with negative PE. However on the level of neural populations,

negative PE cannot be observed, since a homeostatically-regulated system will have

an approximately identical amount of positive and negative activity. Secondly, the

neuroimaging correlate of PE may not actually correspond to the spiking activity of

PE-signalling neurons.

The alternative hypothesis I proposed in Chapter 3 is that the PE-correlated signal

being observed in fMRI recordings may actually correspond to the energy demands of

synaptic plasticity rather than PE-signalling. The energy demands of synaptic plas-

ticity are not well understood, so it is difficult to say whether they can actually cause

a signal observable on fMRI. However, the signalling cost can be decreased up to a

hundred-fold by appropriate synaptic adjustments (Harris et al., 2012), therefore there

should be a significant energy budget assigned to this purpose. These adjustments

could well occur in the time-frame of BOLD response lag (Collingridge et al., 2004).

Therefore I concluded that there is a distinct possibility that synaptic plasticity might

be the source of the PE-correlated signal observed in fMRI.

I further support this argument by a formal proof that, in the context of a task
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such as that used by Nassar and colleagues (2010), synaptic plasticity driven purely by

non-PE learning (Hebb rule) is proportional to PE. The relationship between synaptic

plasticity and PE for more complex experimental paradigms such as that used by

Gläscher and colleagues (2010) is relatively complex. Therefore I resorted to numerical

simulations of synaptic plasticity in Gläscher’s task. These showed that, for a large

area of the parameter space, the correlation between synaptic plasticity and PE is very

high, even though PE was not used to update the synapses.

Chapter 3 therefore concludes that evidence for PE-driven learning at the level of

neural implementation is inconclusive. I therefore returned to the algorithmic level

to see if there was any evidence, beyond Greve et al.’s work on cue consistency, that

necessitates PE-driven learning. The most striking behavioural effect linked to PE

is blocking. However, before addressing blocking, I needed to develop methods to

more directly probe the subjective probability distributions that people update during

learning experiments.

Conventional methods for comparison of learning theories rely on long experimental

schedules at the end of which performance on various items is compared for each

participant. The comparison of learning theories is then model-based in the sense that

models are fitted across long runs of learning trials and compared to the performance of

the participants. This approach is limited by the fact that learning theories specify how

beliefs change with exposure to every new data point, which can be lost in cumulative

summaries at the end of learning blocks. To address this issue, in Chapter 4 I introduced

an experimental paradigm and accompanying statistical methods that allow inference

about changes in participants’ subjective probability distributions before and after a

single learning trial.

The experimental paradigm that I designed for this purpose consists of multiple

N-Alternative Forced Choice [NAFC] queries before and after each learning trial, to

learn about each subjective probability distribution of interest. No feedback is given,

to avoid changing the probability distribution itself.

The statistical method developed to analyse these data utilizes a decision-making

model that is parametrized by the participant’s sensitivity to the difference in utility
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between the two choices, and a residual level of randomness in decision-making that

is independent of the difference in utilities. These two parameters are first estimated

from data assuming that the participants follow optimal statistical inference during

learning. Subsequently, each participant’s subjective probability distribution is inferred

from their responses using the decision-making parameters. To demonstrate the ability

of this method to recover the true subjective probability distributions, I successfully

validated it on artificial datasets. Moreover I demonstrated that I can obtain unbiased

estimates of subjective probability distributions, even when the assumptions of the

inference procedure are not met.

This methodology for inferring subjective probability distributions is utilized in

Chapter 5 to answer the main question of this thesis: whether learning is driven by PE.

Despite the developed and validated system to infer subjective probability distributions

before and after a learning trial, addressing this question would still depend on fitting

learning models rather than directly demonstrating the effect of PE (or lack thereof).

While this model-comparison approach is often used, I wanted to test the role of PE

in learning more directly. I therefore derived two effects that should be observable

in data if PE is the driving force behind the learning. The first of these effects is a

generalization of Kamin’s blocking paradigm (1969) to continuous probability space.

Kamin’s seminal result is that there is less learning when the outcome has already

been predicted. By characterising learning as a movement of the subjective probability

distribution across the probability simplex induced by the learning trial, I was able

to see directly how much learning happens in relation to how much an outcome is

predicted. Correlating these quantities generalises Kamin’s original approach, which

just compares learning between two groups depending on whether or not a group was

pre-exposed to the cue-outcome pair. This generalisation had a profound impact,

besides increasing statistical power. It revealed that Kamin’s original findings can

be explained by Hebbian learning scaled by relative informativeness, in addition to

PE-driven learning, because the two data points (one per group) do not sufficiently

constrain the hypotheses. When the entire space is investigated, the predictions of

these two theories differ: Hebbian learning scaled by relative informativeness predicts
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that learning from one cue in a compound will be relatively small not only when the

other cue is highly predictive of the outcome, but also when it is highly predictive

about any other outcome.

Besides this generalized blocking effect, I also derived a novel effect that has not, to

my knowledge, been described in the literature, yet is a necessary consequence of PE

learning. I call this effect false blocking, because it has both similarities and differences

to Kamin’s original blocking. The effect considers compound learning where both cues

were pre-exposed, but each was associated with a different outcome. It leverages the

prediction of PE learning that when one of the cues in a compound predicts an outcome

that has not occurred, the association with this outcome decreases, even for another

cue that was present but not predictive of that outcome. While Hebbian learning does

not predict any difference in learning dependent on the associations of the other cue in

the compound, Hebbian learning scaled by relative informativeness predicts that the

learning will be smaller as the predictiveness of the other cue increases, irrespective of

what it is predicting.

To test these predictions, I collected a large on-line dataset (approximately 2000

participants completing 5000 compound learning trials), in order to provide sufficient

data to approximate type I error probability by Monte Carlo methods (rather than

making assumptions about the form of the noise in our data). I statistically tested

two sets of hypotheses: 1) whether the generalized blocking and false blocking effects

are in line with PE learning where simple Hebbian learning was used as null hypoth-

esis, 2) whether these effects are better explained by Hebbian learning with relative

informativeness or by standard Hebbian learning. PE did not provide a significantly

better fit to the generalized blocking effect, and more importantly, it produced a very

significant fit in the wrong direction for the false blocking effect. Hebbian learning

scaled by relative informativeness, on the other hand, provided highly significant fits

in the predicted direction for both effects.

This chapter thus clearly demonstrated that, at least in the context of my task,

learning is not driven by PE. Instead, I conclude that there is good evidence that

learning is driven by a signal similar to relative informativenes.
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6.2 Future directions

There were several limitations and issues that arose during this thesis that could be

explored in future studies. For example, in Chapter 2, it was proposed that neuroimag-

ing might be able to identify the time at which cue consistency affects brain activity

associated with learning, which could potentially tease apart whether these effects scale

weight updates at the point of learning, or normalise response selection at retrieval. In

Chapter 3, the question was raised about the neural causes of the BOLD signal mea-

sured by one neuroimaging method (fMRI). More specifically, the possibility was raised

that the BOLD signal (in learning contexts) is dominated by the energy demands re-

quired for synaptic plasticity, rather than neural activity per se related to PE. However,

the precise energy demands and timescales associated with synaptic plasticity do not

appear to be fully known, requiring more basic research in molecular and cell biology.

Answering this question would be beneficial not only for the support or refutation of

the argument proposed here, but also a valuable addition to the understanding of the

nature of signals observed in fMRI in general, potentially confounding results in fMRI

research outside of the field of associative learning.

The other proposition made by Chapter 3 is that PE correlates with non-PE driven

synaptic plasticity. I questioned the conclusions of Gläscher and colleagues (2010) by

suggesting that the PE-correlate they identified might in fact be a correlate of non-PE

driven synaptic plasticity. If this suggestion is correct, then their findings that this

PE-correlate is related to behavioural change do not support their conclusion that PE

drives learning. While I demonstrated that PE and non-PE driven synaptic plasticity

are in many cases highly correlated, they are not aligned perfectly. Indeed, if they

are sufficiently decorrelated, it may be possible to compare the variance in behaviour

explained by the neural correlate of PE with that explained by the neural correlate of

non-PE driven synaptic plasticity, and hence support one theory over the other.

Chapter 4 proposed a set of statistical methods that identify the likelihood that

a given probability distribution is the probability distribution held by the participant

at a certain point in time. This method is critically reliant on the decision-making
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model that was adopted for this task. The two parameters of this model, β and

κ, define the participant’s sensitivity to the difference in utility of the alternatives

offered on a particular trial and a residual level of randomness that is not sensitive to

this utility difference. There are a large number of other parameters that might be

potentially worth incorporating into the decision-making model, such as the tendency

to persevere with one’s past responses. Including these and other parameters may

change the ability to accurately recover subjective probability distributions. Secondly,

the decision making parameters implemented in the decision-making model are fitted

for each individual participant and kept fixed throughout the experiment. However, it

is likely that the properties of decision-making vary during the task for reasons such

as fatigue, therefore it might be potentially beneficial to allow the parameters of our

decision-making model to vary in time.

The results presented in Chapter 5 clearly favour non-PE theories, yet there is still

a possibility that these results are driven by our unusual experimental paradigm and/or

on-line data collection. It would be beneficial for the argument made by Chapter 5 to

look for the false-blocking effect in a more conventional learning paradigm, such as a

simple paired associate task.

Ideally, the false blocking effect would be investigated in conditioning paradigms

with non-human species. Here I summarise what such a conditioning version of the false

blocking paradigm might look like. As in the classic blocking paradigm, this paradigm

would consist of three phases: pre-exposure, exposure and testing, and two groups

of subjects: experimental and control. The major difference between blocking and

false blocking is that false blocking requires three possible outcomes (types/locations

of reward). The pre-exposure phase would consist of repeated exposures to cue A and

outcome 1, as well as cue B and outcome 2. However, the subject must be aware

that cue C and outcome 3 are both also possible, even though outcome 3 should

never be paired with either A or B. During the exposure phase, an AB compound

would be presented along with outcome 2. During the testing phase, the experimental

group would be tested for the outcome associated with cue B, while the control group

would be tested for the outcome associated with cue C. The subject must be prevented

100



from selecting outcome 2: even though it might be preferred, it is not relevant to the

predictions. Rather, the prediction from theories driven by PE is that the experimental

group will prefer outcome 3 over outcome 1, because outcome 1 was predicted during

the exposure phase (by cue A) but did not occur, and therefore the B-1 association

should have decreased relative to the B-3 association (whereas in the control group,

there should be no difference). According to Hebbian learning on the other hand

(whether or not that learning is scaled by relative informativeness) there should be no

difference between outcomes 1 and 3 for either groups.

While the model based on Hebbian learning scaled by relative informativeness pro-

vided fits to the data that were extremely unlikely to occur by chance (due to the

Hebbian model alone), it is important to note that close investigation of the data

shows that there are a number of other robust effects that are not predicted by any

current theory of associative learning. Using the formalisation of learning as a flow

across a probability simplex introduced in Chapter 5, it is possible for the first time to

observe learning directly. I therefore suggest that these tools should be used for future

exploratory investigations in associative learning - describing the learning dynamics

rather than testing hypotheses. The alternative, a conventional approach to test a

specific hypothesis on a very limited number of points in the vast space of learning

situations, may take very long to converge on the true learning mechanisms.

6.3 Conclusion

This thesis offered a critical view of one of the most popular hypotheses in learning

theory: viz, that learning is driven by Prediction Error. In two theoretical chapters, I

investigated the evidence used to justify this hypothesis and concluded that conclusive

proof of the role of PE in associative learning is yet to be found. In the two subsequent

chapters, I offered statistical and experimental tools to infer the subjective probability

distributions after each learning trial, which are critical to fully determine the type

of learning, and applied them to a novel dataset. By examining compound trials

that enable measurement of generalised and false blocking, these data rejected the
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hypothesis that learning is driven by PE, and instead support my alternative hypothesis

that learning is Hebbian, but scaled by the relative informativeness of cues.
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Appendix

A Derivation of likelihood of γ

The following derivation shows how a concentration hyperparameter, γ, be obtained

from data. This derivation specifies the likelihood for a group of cues (or a specific

context), but can equally well be used to find out concentration of a single cue.

L({Ot}, γ|{Ct}) = P ({Ot}|{Ct}, γ) = (1)

using summation rule

=

∫
P ({Ot}, w|{Ct}, γ) dw (2)

and product rule

=

∫
P ({Ot}|{Ct}, w) P (w|γ) dw (3)

Specifying for matrix columns/rows across T trials

=

∫ T∏
t=1

P (Ot|w(Ct))
N∏
i=1

P (w(i)|γ) dw (4)

T∏
t=1

P (Ot|w(Ct)) ≡
N∏
i=1

∏
t: Ct=i

P (Ot|w(i)) (5)

or also across N possible outcomes

=

∫
· · ·
∫ N∏

i=1

( ∏
t: Ct=i

P (Ot|w(i))

)
P (w(i)|γ) dw(1) · · · dw(N) (6)

which is

=
N∏
i=1

[∫ ( ∏
t: Ct=i

P (Ot|w(i))

)
P (w(i)|γ) dw(i)

]
(7)
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given a multinomial distribution (which results from dropping the normalising factor

in the Dirichlet distribution that is no longer needed as the distributions is already

normalised)

P (o|w) =
∏
j

w
δjo
j (8)

and a Dirichlet distribution normalized by inverse of multinomial β function

P (w|γ) =
1

β(γ)

∏
j

wγ−1
j (9)

and the fact that ∏
t: Ct=i

P (Ot|w(i)) = P ({Ot}t: Ct=i|w(i)) (10)

substituting into 7

=
N∏
i=1

∫ ( ∏
t:Ct=i

∏
j

w
(i)
j

δjOt

)
1

β(γ)

∏
j

w
(i)
j

γ−1
dw(i) (11)

=
1

β(γ)

N∏
i=1

∫ ∏
j

w
(i)
j

γ−1+
∑
t:Ct=i

δjOt dw(i) (12)

since

n
(i)
k =

∑
t:Ct=i

δkot , (13)

where δ stands for Kronecker delta function,

=
1

β(γ)

N∏
i=1

∫ ∏
j

w
(i)
j

γ−1+n
(i)
k

dw(i) (14)

we define

γ′ = γ + n
(i)
k (15)

substituting 15 into 14

=
1

β(γ)

N∏
i=1

∫ ∏
j

w
(i)
j

γ′−1
dw(i) (16)

since the beta function is a normalising factor for the Dirichlet distribution, which

is a probability distribution, and therefore W must lie on a probability simplex∫
1

β(γ)

∏
j

wγ−1
j dw = 1 −→ β(γ) =

∫ ∏
j

wγ−1
j dw (17)
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based on which we define

β′(γ) =

∫ ∏
i

wγ
′−1
i dw = β(γ′) (18)

which, given 18 and 15, results in

=
1

β(γ)

N∏
i=1

β(γ + n(i)) (19)
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B Decision-making parameters optimisation

The decision-making model from chapter 4.0.2 needs to be optimized for every partici-

pant as I allow for individual differences in decision-making. The subjective probability

distributions used in this phase are the relative frequencies of outcomes for each cue.

As the optimization initialized from a single point can lead to severely sub-optimal lo-

cal minima I initialize from several values provided below. After obtaining best fitting

decision-making parameters, the likelihood across subjective probability distributions

are calculated using the generative model.

variable description initialization

β decision-making temperature 1, .5 then 13 times U(0, 10)

κ residual randomness indecision making .94, .94 then 13 times U(.5, 1)
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C High and low performing participants

To further explore the dataset, I split the participants that completed at least 100 trials

into high and low performing halves. The trial number criterion was necessary because

most participants who did not score highly were those that completed only very few

trials, therefore the resulting trial-count would differ widely between groups.

No actual hypothesis testing was performed as I do not have any hypotheses about

what the patterns of performance should be. Adapting the MC results from Chapter

5 was necessitated by very high computational demands of the sampling. While this

approach is not entirely adequate, the very large difference between MC samples and

best fit parameters shown in Table 1, together with the very large sample size, suggests

that the effects discussed in chapter 5 exist even for these two groups separately.

Hypothesis Effect ahigh alow µ(aMC) σ(aMC)

PE learning

blocking -0.03 -0.01 -0.01 0.12

false blocking 0.25 0.17 0 0.01

RI

blocking -0.52 -0.41 0 0.06

false blocking -0.10 -0.16 0 0.03

Table 1: Results of hypothesis testing for a high (ahigh) and low (alow) performing

group of participants. a is a free parameter fitted and MC refers to distribution of

values of a from Monte Carlo sampling that was performed over the entire dataset.
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